
Model-Platform Optimized Deep Neural Network
Accelerator Generation through Mixed-Integer

Geometric Programming
Yuhao Ding∗,1, Jiajun Wu∗,1, Yizhao Gao1, Maolin Wang2, Hayden Kwok-Hay So1
1Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong

2AI Chip Center for Emerging Smart Systems, Hong Kong
{yhding, jjwu, yzgao}@eee.hku.hk, maolinwang@ust.hk, hso@eee.hku.hk

Abstract—Although there are distinct power-performance ad-
vantages in customizing an accelerator for a specific combination
of FPGA platform and neural network model, developing such
highly customized accelerators is a challenging task due to the
massive design space spans from the range of network models
to be accelerated, the target platform’s compute capability,
and its memory capacity and performance characteristics. To
address this architectural customization problem, an automatic
design space exploration (DSE) framework using a mixed-integer
geometric programming (MIGP) approach is presented. Given
the set of DNN models to be accelerated and a generic description
of the target platform’s compute and memory capabilities as
input, the proposed framework automatically customizes an
architectural template for the platform-model combination and
produces the associated I/O schedule to maximize its end-to-
end performance. By formulating DNN inference as a multi-level
loop tiling problem, the proposed framework first customizes an
accelerator template that consists of a parameterizable array
architecture with SIMD execution cores and a customizable
memory hierarchy using a MIGP to maximize the expected
resource utilization. Subsequently, a second MIGP is used to
schedule memory and compute operations as tiles to improve on-
chip data reuse and memory bandwidth utilization. Experimental
results from a wide range of neural network models and FPGA
platform combinations show that the proposed scheme is able
to produce accelerators with performance comparable to the
state-of-the-art. The proposed DSE framework and the resulting
hardware/software generator are available as an open-source
package called AGNA with the hope that it may facilitate
vendor-agnostic DNN accelerator development from the research
community in the future.

I. INTRODUCTION

Specializing an accelerator architecture for a particular deep
neural network (DNN) to run on a particular platform has dis-
tinct power-performance advantages over the use of a generic
design. However, manually optimizing an accelerator over the
enormous design space spans from a large number of often
changing DNN topologies, greatly varied platform capabilities,
as well as sophisticated I/O and compute operation scheduling
is not only time-consuming and error-prone, but the resulting
performance is also difficult to predict early in the design
process. Even small changes in the neural network model,
such as altering the stride size, kernel size, or the number
of channels used in a convolutional neural network (CNN)

*Equal contribution.

layer, can lead to significant performance degradation due to
non-trivial hardware implementation issues such as mismatch
in the number of available computing and on-chip memory
resources, off-chip memory bandwidth, data layout or I/O
schedule. As a result, development effort spent on optimizing
one particular network on one particular target platform can
hardly be reused when the network topology changes or when
a different platform is targeted, which is very common in
real-world industrial settings. To facilitate high productivity
DNN accelerator development, it is therefore desirable to have
automated design space exploration (DSE) tools that rapidly
customize DNN accelerators for a target platform with good
and reliable performance estimations.

In this paper, we introduce AGNA, an open-source, flexible,
and extensible hardware generator for DNN acceleration that
fills this gap. Given a DNN model and a generic specification
of the compute and memory capabilities of the target plat-
form, AGNA automatically produces a hardware accelerator
optimized for the targeted model-platform combination. To
achieve that, AGNA utilizes a highly customizable architecture
template with an array of processing elements (PE) combined
with a parametrizable memory hierarchy. Using this template,
AGNA formulates the inference of each network layer as a
multi-level loop tiling problem and uses a mixed integer geo-
metric program (MIGP) to search for the optimal accelerator
architecture based on a cross-layer analysis of the tiled loops
under the performance and resource constraints of the target
platform. At the hardware level, while the operations between
the PE array execute asynchronously, the operations within the
compute units of a PE are designed to execute with lock step in
a single-instruction-multiple-data (SIMD) fashion to simplify
hardware control logic. Finally, compute and I/O operations
of each layer are scheduled to run on this architecture using
a second MIGP to minimize overall execution latency, taking
into account the hierarchical computing facilities, the amount
of on-chip memory, as well as the performance of off-chip
memory.

AGNA has been tested with a large combination of DNN
models targeting a range of FPGA platforms with different
compute and memory capabilities. Our results show that,
on average, AGNA produced DNN accelerator designs and
their corresponding schedules with 12.7% overhead over the



theoretical performance of the given platform, while achieving
end-to-end inference performance comparable to the state-of-
the-art. With that, the main contributions of AGNA are in the
following aspects:

• We propose an automatic DNN inference accelerator
generation framework that produces model-platform op-
timized hardware and software for FPGA systems;

• We propose two MIGP formulations and their relaxed
solutions to achieve high-performance combined archi-
tectural search and operation scheduling in a unified
framework;

• We contribute the design framework to the community
as an open-source software to facilitate further enhance-
ments1.

In the next section, background and related work on op-
timizing DNN accelerators for FPGAs are described. The
proposed design space exploration (DSE) methodology will
be elaborated in Section III. Detailed implementation of the
hardware template is discussed in Section IV. Experimental
results are reported in Section V. We will conclude and layout
future extensions to AGNA in Section VI.

II. BACKGROUND & RELATED WORK

A. DNN Accelerator on FPGA

A large body of works have repeatedly demonstrated the
power and performance benefits when the design of an accel-
erator and the target neural network can be co-designed at the
same time.

For instance, in the work of LUTNet [1], the K-LUT of
FPGAs were used as building blocks to construct neural net-
works, which naturally lead to efficient hardware implementa-
tions. In [2], the authors proposed an ultra low-latency FPGA-
based image analytical system using a quantized convolutional
neural network that facilitate hardware pipeline operations.
Other works such as [3], [4] also leveraged special hardware
convolution operations like shift kernel or deformable kernel
to achieve a better tradeoff between accuracy and hardware
efficiency on FPGA. Furthermore, many works have explored
using extreme low-bitwidth quantization to achieve better
hardware performance [5], [6], [7].

However, given the enormous design space, it remains an
unsolved challenge to optimize each model-platform com-
bination to address the ever-changing real-world application
requirements in speed and accuracy. As a result, in one line
of work, techniques such as network architecture search (NAS)
and hardware design space exploration (DSE) have been
integrated together to achieve automatic algorithm-hardware
codesign [8], [9], [10]. On the other hand, a number of works
focus on the auto-generation of optimal hardware implemen-
tations for different networks and platforms. For instance,
FP-DNN [11] designed an automated framework that maps

1Latest source code can be found at https://github.com/CASR-HKU/
AGNA-FCCM2023, source code for artifact evaluation can be found at
https://doi.org/10.25442/hku.22181803.

the hardware implementation of a DNN from Tensorflow-
description using predefined RTL-HLS templates of layers.
[12] provided a framework that transforms C-program to CNN
accelerator implementation in a systolic array architecture.
SAMO [13] explored the automation of producing CNN accel-
erator targeting streaming architecture. In DNNBuilder [14],
the authors proposed a fine-grained layer-based pipeline ar-
chitecture with an automatic resource allocation algorithm to
perform DSE in hardware implementation. Similar work also
targeted Cloud FPGA [15] and ASICs [16]. Following this line
of work, AGNA also aims to produce hardware accelerators
that are customized for a given set of neural networks. It is
unique in the way it searches for optimal architecture using
MIGPs over a loop tiling formulation of a neural network and
it shows that such formulation can be solved efficiently using
relaxation-rounding algorithms.

B. Geometric Programming

Constrained optimization is widely used in computer ar-
chitecture and system research. By properly formulating a
design problem into objectives and constraints functions, one
can solve large-scale problem reliably and efficiently. Prior
works have adopted approaches like polyhedral transforma-
tion [17], [18], [19], mixed-integer programming [20] in
accelerator design and operation scheduling. In particular,
geometric programming owns the advantages of modeling loop
tiling/unrolling in a very generic and simple way. A geometric
program is a non-linear optimization problem characterized as
follows:

min f0(x)

s.t. fi(x) ≤ 1, i = 1, ...,m

hi(x) = 1, i = 1, ..., p

(1)

where f0,..., fm are polynomials and h1, ..., hp are monomi-
als [21]. A monimial is a function cxa1

1 xa2
2 · · ·xan

n with c > 0,
and a polynomials is a sum of monimial,

∑K
k=1 ckx

a1k
1 xa2k

2 ·
· · xank

n , where ck > 0. It can be transformed into a convex
form and solved efficiently with guaranteed convergence to a
global optimal solution [22].

Previous works have used geometric programming to op-
timize design transformation in HLS [23], data-reuse [24],
[25], [26], and tiling size selection [27], [26]. In this work,
we leverage geometric programming to capture spatial and
temporal tiling of nested loops in DNN hardware generator
and operations scheduling in a uniform manner and use an
efficient relaxation-rounding algorithm to solve the proposed
programs.

III. DSE METHODOLOGY

AGNA takes DNN models and FPGA platform specifica-
tions as input and automatically produces high-performance
hardware accelerators. The DSE flow of AGNA is shown in
Fig. 1. The DSE in AGNA is decoupled into Architecture
Search and Operation Scheduling to reduce the design space.
Each decoupled problem is formulated as a MIGP. Without

https://github.com/CASR-HKU/AGNA-FCCM2023
https://github.com/CASR-HKU/AGNA-FCCM2023
https://doi.org/10.25442/hku.22181803


Design Space Exploration(DSE)

AcceleratorSchedule 
 

Operation 
Scheduling

DNN 
model

Accelerator 
Builder

Architecture 
 

Architecture 
Search

Platform 
Spec.

Fig. 1: Overview of AGNA design flow.

TABLE I: Notations of constants and variables in DSE.

Type Notation Description

Operation
Constant

D The set of 6 enumerated loop dimensions:
D = {1, 2, 3, 4, 5, 6}.

Ld Loop bound of d-th loop of a layer.

L
The set of loop bounds in a layer:
L = {Ld | d ∈ D}.

Platform
Constant

Ndsp Number of available DSP blocks.
Nmem Number of available memory blocks.
α DSP cost of one MACC operation.
β Memory cost of one buffer.
γrf, γbuf Capacity of RF or buffer.
wdata Bitwidth of data.
wbus Bitwidth of data bus on platform.

Design
Variable

A
The set of architecture parameters of PE.
Design variable in Architecture Search.

O
The set of schedule parameters of a layer.
Design variable in Operation Scheduling.

such decoupling, the design space can reach ∼ 103 variables
and ∼ 101000 valid design points for ResNet-50.

In this section, we first introduce the abstraction method-
ology of AGNA in Section III-A. Then we formulate the
MIGP of Architecture Search and Operation Scheduling in
Section III-B and Section III-C, respectively. We also in-
troduce a relaxation-rounding algorithm to solve MIGP in
Section 1. Table I lists the notations of constants and variables
used in DSE.

TABLE II: The columns under operation mapping show the
semantics of Ld in different operations. 1 indicates the loop
is skipped. The columns under memory mapping show the re-
lation between Ld and the memory hierarchy. The checkmark
indicates whether the memory is connected to the dimensions
in the DSP array. Note that RF only exists between ABUF
and DSP array.

Operation mapping Memory mapping
Conv MatMul FC ABUF WBUF PBUF RF

L1
output

channel
output

row
output
width ✓ ✓

L2
input

channel
input
row

input
width ✓ ✓ ✓

L3
weight
height 1 1 ✓ ✓

L4
weight
width 1 1 ✓ ✓

L5
output
height 1 1 ✓ ✓

L6
output
width

output
column 1 ✓ ✓

for l1 in range(L_1):
for l2 in range(L_2):
for l3 in range(L_3):

for l4 in range(L_4):
for l5 in range(L_5):
for l6 in range(L_6):

output_act[l1,l5,l6] += weight[l1,l2,l3,l4] * \
input_act[l2, l5*s+l3, l6*s+l4]

for o_t2 in range(O_T2):

for o_s2 in range(O_S2):

for o_p2 in range(O_P2):

for o_q2 in range(O_Q2):

for o_f2 in range(O_F2):

Fig. 2: The 6-dimension nested loop representation of a
layer. s is the stride of input activation access. In Operation
Scheduling, each L loop is further tiled into 5 sub-loops. The
loops in the small green box show the example of tiling L2

loop.

A. Abstraction Methodology

1) Operation Abstraction: The operation of a DNN layer
can be represented in a 6-dimension nested loop as shown in
Fig. 2. The loop bounds are denoted as L. AGNA support
convolution, depth-wise convolution, max pooling, average
pooling, matrix-matrix multiplication, and fully connected
layers by assigning L to different semantics. Detailed mapping
of L is shown in Table II. Depth-wise convolution, max
pooling, and average pooling layers are omitted since they
have the same semantics as convolution layers and are only
different in operations.

2) Architecture Abstraction: The target architecture of the
accelerator in AGNA is built by an array of processing ele-
ments (PE) as shown in Fig. 3. PEs communicate with external
memory through a multicast network. All PEs share the same
control logic and operate in single instruction multiple data
(SIMD) fashion. Each PE has one DSP array for computation
and two levels of memory for storage.

The DSP array has 6 dimensions of DSPs, corresponding to
the 6-dimension loop in L. We denote the architecture of the
DSP array as a vector A = {Ad | d ∈ D}. Ad is the number
of parallel operations on dimension d. The total number of
DSPs required in one PE is:

Ndsp = α
∏
d∈D

Ad (2)

Where α is the cost of DSPs per operation. For example, α =
0.5 if two MACC operations are packed into one DSP block.

The memory in PE has two levels: buffer and register file
(RF). We build ABUF, WBUF, and PBUF at the buffer level to
store input activation, weight, and partial sum. Buffers directly
communicate with external memory. Each buffer is connected
to multiple RFs. RFs are smaller than buffers and only store a
small copy of data from the upper-level buffer. We build RFs
for ABUF due to the irregular access of input activation shown
in Fig. 2. The access to the ABUF varies dynamically from
stride and kernel size. With RF, the accelerator can flexibly
support different data access and schedules while maintaining
high computation efficiency and reducing memory footprint.
RFs for WBUF and PBUF are eliminated since the access is
static.



PEPE

Memory

···

buffers

RFs

DSP array

···

···

Fig. 3: Abstract accelerator and pseudo-code of mapping from
operation to accelerator. The background color of the pseudo-
code corresponds to the scope of the hardware.

The required number of buffers or RFs in one PE can be
computed by the product of its related dimensions. The related
dimensions are shown in Table II. For example, the number
of PBUF is given by Npbuf = A1A5A6. Similarly, we define
Nabuf, Nwbuf, and Nrf. The total number of memory blocks
required in one PE is:

Nmem = β (Nabuf +Nwbuf +Npbuf) (3)

Where β is the cost of memory blocks per buffer. As a vendor-
agnostic tool, AGNA does not limit the memory type. For
example, the memory blocks could be RAM18K in Xilinx
devices or M20K in Intel devices. RF is built by LUTs thus
is excluded from the above formulation.

Variable A is used to denote the architecture of PE. The
total number of PEs built on the accelerator is denoted as
Npe.

3) Scheduling Methodology: There are 5 levels in the
accelerator to be scheduled: T , S, P , Q, and F , as shown
in Fig. 3. A loop is tiled to 5 levels and mapped to the levels
in the accelerator. T is mapped to PE in the time domain
where the loop body inside T is executed sequentially. S is
mapped to PE in the space domain where the loop body is
assigned to different PEs and executed in parallel. We refer
to the loop body of S as a tile, the execution unit in PE.
Inside the PE, a tile is further mapped to P , Q, and F . P
and Q are assigned to the memory hierarchy of buffers and
RFs respectively. All DSP operations in F are mapped to the
DSP array and executed in parallel. Each level has 6 schedule
parameters which are the tiling factors. A 5 × 6 matrix O is
used to denote the schedule parameters of a layer. We denote
the vector of schedule parameters at level l as Ol, where
l ∈ {T, S, P,Q, F}. A single schedule parameter at level l
of d-th loop in O is denoted as Ol,d. e.g., OT,4 denotes the
schedule parameter at level T of 4-th loop.

B. Architecture Search

In this section, we discuss the formulation of architecture
search. By modeling the resource utilization of the accelerator
and architectural latency of each layer, a cross-layer MIGP is
formulated. The architecture A will be produced in this stage.

1) Resource Utilization: The accelerator has a total number
of Npe PEs. PE utilizes most hardware resources including
DSPs and memory blocks in the accelerator. With the resource
utilization of single PE that is formulated in (2) and (3), the
total number of DSPs used by the accelerator is formulated as
NpeNdsp, and the total number of memory blocks used by the
accelerator is formulated as NpeNmem.

2) Latency Model: We formulate the latency of i-th layer as
the max of computation latency and communication latency:

compiarch =

∏
d∈D

⌈
Li
d/Ad

⌉
Npe

commi
arch =

max
(
sizeird, size

i
wr

)
wdata

wbus

latiarch = max
(
compiarch, commi

arch

)
(4)

sizeird computes required size of input activation and weight
in layer i. sizeiwr computes required size of output activation
in layer i. They are all formulated as posynomial of variable
A, e.g., sizeiwr = Li

1L
i
5L

i
6. wdata is the bit width of data. wbus

is the bit width of the data bus between the accelerator and
external memory.

3) Optimization Program of Architecture Search: With the
resource utilization and latency model above, the architecture
search problem for an m layers DNN model is formulated as:

min
A

m∑
i=1

latiarch

s.t. NpeNdsp ≤ Bdsp

NpeNmem ≤ Bmem

(5)

The objective function is the sum of the architectural latency
of each layer. Note that this formulation can be extended to
multi-model optimization by formulating the geometric mean
of architectural latency of multiple models. The extended
objective function is still in the form of posynomial and
thus the extended optimization program is still a geometric
program.

C. Operation Scheduling

In this section, we discuss the formulation of operation
scheduling. A becomes constant after the architecture search
stage. The schedule of each layer is formulated as a MIGP
individually. The operation schedule O will be produced by
solving this MIGP.

1) Loop Bound Constraints: To keep the effectiveness of
computation, the schedule should cover all operations in the
original loop L. Therefore, the product of schedule parameters
of all levels should be larger than the loop bound on the
corresponding dimension. For each d ∈ D:

Ld ≤ OT,dOS,dOP,dOQ,dOF,d (6)



2) Spatial Constraints: A valid schedule should ensure that
each operation is mapped to a valid PE and DSP. In the target
architecture, S and F levels are mapped to the accelerator in
the space domain. S level is mapped to different PEs. PEs
are connected via a multicast network and can be mapped to
arbitrary dimensions at runtime. The schedule is valid when
the product of OS is no more than the total number of
PEs. Level F is mapped to parallel DSPs. The connection of
DSPs is hard-wired. Hence each scheduling parameter in level
F should not exceed PE architecture on the corresponding
dimension. The spatial constraints are:∏

d∈D

OS,d ≤ Npe

OF,d ≤ Ad ∀d ∈ D
(7)

3) Memory Utilization: Referring to the pseudo-code in
Fig. 3, memory should store all required data for the inner
loop. RFs are at the level Q and should start data for Q and
F . Buffers are at the level P and should store data for P , Q,
and F . The utilization of RFs and buffers can be formulated
as:

Urf =
∏

d∈{2,5,6}

OQ,dOF,d

Uabuf =
∏

d∈{2,5,6}

OP,dOQ,dOF,d

Uwbuf =
∏

d∈{1,2,3,4}

OP,dOQ,dOF,d

Upbuf =
∏

d∈{1,5,6}

OP,dOQ,dOF,d

(8)

Note that Urf and Uabuf listed here are in the case of stride = 1
for simplicity. Other stride sizes are also supported.

4) Computation Cycle: PE executes the tiles sequentially.
Inside the execution of one tile, the PE iterates over level P
and Q sequentially in the time domain. Level F is mapped to
parallel DSPs. DSPs start to compute after the data in RFs are
ready. We use double buffering on RFs to hide the latency
of updating RFs. The computation latency of one layer is
formulated as:

compschd = max

(
Urf,

∏
d∈D

OQ,d

) ∏
d∈D

OP,dOT,d (9)

The result of max is the execution cycle of one P iteration.
The first term in max is the update cycle of RFs. Here we
update one data each cycle. The second term in max is the
execution cycle of the DSP array, which is the product of OQ.
Therefore, the execution cycle of one layer can be formulated
as the product of one P iteration cycle and the total number
of iterations which is the product of OP and OT .

5) Communication Cycle: The communication cycle is
determined by both the update cycle of buffers and the reuse
pattern of buffers. We first formulate the update cycle of
buffers. For ABUF:

updtabuf =
Uabufwdata

wbus
(10)

Algorithm 1 Relaxation and Rounding

Input: A m layers network with loop bound L1, ...,Lm, rounding
range R.

Output: Architecture A.
1: Find the real-value solution Ã for the relaxed program in (5)

using standard geometric program solver
2: Add bounds to each variable:

⌊
Ãd ×R−1

⌋
≤ Ad ≤⌈

Ãd ×R
⌉
, ∀d ∈ D

3: Add integer constraint to each variable: Ad ∈ N+, ∀d ∈ D
4: Solve the new integer program using MIGP solver

Similarly, updtwbuf and updtpbuf can be formulated by substi-
tuting Uabuf in Eqn. 10 with Uwbuf and Upbuf, respectively.

PEs are assigned with different tiles of computation. How-
ever, different tiles of computation may use the same tile of
data. For example, a tile of output activation is accumulated
by the partial sum from multiple different tiles. These tiles
of partial sum correspond to different tiles of computation.
Such kind of reuse can be categorized into temporal reuse
and spatial reuse.

Temporal reuse happens when the tile of data in the buffer
can be reused in the next tile of computation. The loop
order in level T determines the temporal reuse pattern. The
loop is ordered as (L1, L5, L6, L2, L3, L4) from outermost to
innermost for an output-stationary dataflow. In this case, data
in PBUF is fully reused, while ABUF and WBUF need to be
updated before each tile of computation.

Spatial reuse is conducted by the multicast network that
connects all PEs and external memory. One data tile can
be transferred to multiple PEs simultaneously through the
multicast network.

The communication cycle of one layer under output-
stationary dataflow is:

commschd =updtpbuf

∏
d∈{1,5,6}

OT,dOS,d

+updtwbuf

∏
d∈D

OT,d

∏
d∈{1,2,3,4}

OS,d

+updtabuf

∏
d∈D

OT,d

∏
d∈{2,5,6}

OS,d

(11)

6) Optimization Program of Operation Scheduling: With
the analysis and modeling above, the operation scheduling
problem is formulated as:

min
O

max (compschd, commschd)

s.t. Urf ≤ γrfNrf

Uabuf ≤ γbufNabuf

Uwbuf ≤ γbufNwbuf

Upbuf ≤ γbufNpbuf

(12)

Note that the constraints in (6) and (7) are also part of the
operation scheduling problem.



D. Solving Algorithm

In the previous discussion, we formulate the architecture
search problem and operation scheduling problem as two
optimization programs (5) and (12). As mentioned before,
directly solving the program in the enormous integer space is
intractable. In AGNA, we use a relaxation-rounding algorithm
to search for the solution efficiently. The detailed explanations
are as follows.

1) Transformation: To cast our programs into standard GP
formulation, we need to transform unsupported operations
like max and ceiling. max can be eliminated by setting
an intermediate variable and substituting the max operation
in the original formula with the intermediate variable. The
intermediate variable should be larger than any variables inside
max. The ceiling operations in (4) are also eliminated by
setting an intermediate variable. The ceiling operations will
be automatically recovered in integer scope. After that, all
the previously discussed constraints and objectives can be
reorganized as polynomial inequalities.

2) Relaxation: The proposed programs will then be relaxed
and reorganized as standard GP in (1) to allow the GP
solver to produce a solution in one shot. All the original
integer variables are allowed to be positive real values, i.e.
x > 0,∀x ∈ A,O.

3) Rounding: After we obtain the relaxed solution, it will
be rounded into integers. Since the simple rounding results can
neither be guaranteed to be feasible nor optimal, we search for
optimal results within a rounding range. In other words, for
each variable in the relaxed solution, a certain number of the
nearest integers will be selected to be the candidate for the
final solution. This is done by setting integer upper and lower
bounds on variables. In AGNA, we use a geometrical range
factor R that multiplies or divides the original relaxed solution
to get the bounds. By adding these additional constraints of the
rounding range, the final program will be fed into an integer
programming solver. Choosing a larger range factor leads to a
larger search space, which takes longer to solve. This can be
a tradeoff between efficiencies and qualities of the solution.

Alg.1 shows an example of using the relaxation-rounding
algorithm to solve the architecture search problem in (5).

IV. HARDWARE TEMPLATE

Given the architecture produced by the DSE framework,
AGNA customize a hardware template to produce the accel-
erator. This section introduces the detailed implementation of
the hardware template and the optimizations of the template.

A. Overall Architecture

Fig. 4 shows the overall architecture of the template. Besides
the PE array as mentioned in the III-A, the template also
consists of a top controller (AGNA controller) for reading
instructions from external memory and redistributing to other
modules, and some special computation modules for batch
normalization, quantization, residual add, and activation. The
instructions are stored in the external memory and transferred
to the accelerator through the memory interface. To improve

External Memory

Memory Interface

Prefetch Buffer AGNA 
Controller

Interconnect

Layout Converter
& Crossbar

PSU
M

 Adder

Activation Unit

Residual Adder

Layout Converter

PE controller

Quantization Unit

Batch Norm Unit

ABUF

WBUF

RF

PBUFCU

PE #1
PE #2
…

…

PE 
Array

Convert Layout

MM2S cmd S2MM cmd

PE cmd RA cmd

BA cmd

Fig. 4: The architecture of proposed hardware template.

the execution efficiency, the instructions only include layer
parameters L and schedule parameters O. The AGNA con-
troller fetches the instructions and generates commands to the
different modules for control. When proceeding to the next
layer, the controller will fetch another batch of instructions
and regenerate new commands. Besides, we set up a prefetch
buffer to hide the memory latency from the external memory
to the acclerator. The interconnect module is responsible for
dispatching input activations and weights to PEs or bypassing
to residual adder. After the computations are finished by PE
array, PSUM adders will add up the partial sums. The output
results will go through all the special modules to obtain output
activation data. Finally, the interface will write the valid results
back to the external memory.

B. Processing Element (PE)

As mentioned in the III-A, each PE consists of buffers, RFs,
and a DSP array. All the PEs share the same PE controller

… …

Execution

Writeback

Load …

S Loop

T Loop

PE 1 PE N

T Loop

PE 1 PE N

S Loop

Time

Double-buffer

…

…

…

PQF Loops
inside PE

Double-buffer

…

P Loop

…

…

Update 
RFs

RF Execution

Q

Q

Fig. 5: PE array processing diagram for T , S, P , Q, and F
loops. The hardware can achieve a high-throughput pipeline
by using double buffering.



DSP

DSP

ACC

PBUF

WBUF

RF

DSP

RF

DSP

DSP

ACC

PBUF

RF

DSP

RF

DSP

DSP

ACC

PBUF

RF

DSP

RF

DSP

DSP

ACC

PBUF

RF

DSP

RF

RF RF RF RF

WBUF

WBUF

ABUF

ABUF

ABUF

+×

+×
RF

ACT

W
PSUM

+

DSP chain

PBUF
ACC

DSP chain

𝐴 !
=
3

𝐴"×𝐴#×𝐴$ = 4
𝐴# = 2

𝐴 "
×
𝐴 !
×
𝐴 %
×
𝐴 &

=
3

Fig. 6: An example PE architecture with A = {1, 3, 1, 1, 2, 2}

as a SIMD-like execution to reduce the hardware overhead
introduced by the control logic.

1) PE controller: The execution of PE array is controlled
by the PE controller. Fig. 5 shows how the PE array execute
the T , S, P , Q, and F loops. Blue blocks refer to the load
stage in which the PE array fetches input activation and weight
from the prefetch buffer, and yellow blocks belong to the
PE execution stage where all the PEs execute P , Q, and F
loops simultaneously. The writeback stage is shown in green
blocks, indicating that the PE array is writing data back to the
external memory. As illustrated in Section III, T and S loops
are mapped to the PE array temporally and spatially. Before
starting each layer, the PEs are assigned to an S index for the S
loop in the load and writeback stages, and they share the same
execution controller to process P (update RFs from ABUF),
Q (RF execution loop), and F (parallel DSP operations) loops
inside PE. We use double buffering on all the buffers and RFs
to overlap the load, writeback and execution stages.

2) DSP array: Fig. 6 shows the PE design for based on an
example of architecture A = {1, 3, 1, 1, 2, 2}. The RFs with
the same A2 (i.e. same row in Fig. 6) are connected to the
same ABUF as input. Similarly, WBUFs are shared in the A5

and A6 dimensions, while PBUFs are shared in the A2, A3,
and A4 dimensions. Because all the computations in A2, A3,
and A4 dimensions will be accumulated to the same partial
sums, the DSPs are separated into different DSP chains to
improve the timing performance. If the DSP slice supports
at least 24-bit input MACC mode (e.g. DSP48E2 in Xilinx
UltraScale FPGA), we can take advantage by combining two
INT8 MACC while sharing the same kernel weights [28]. For
instance, the two adjacent DSPs with the light gray color in
Fig. 6 can be replaced with one, and the total number of DSPs
is reduced to half.

C. Layout Converter

As a hardware template, it should support different archi-
tecture and data bus width combinations. At the load stage,
the data bus width may not match the buffer write width. At

…

2 3 …

… … …

ACT / W from external

0

Crossbar

1 2 3

PE PE PE PE…

Crossbar

128b

128

32

FIFO
s

…

0 1 …

2 3 …

… … …

0 1 …

2 3 …

… … …

…

PE Array

Cycle 0

Cycle 1

Layout 
inside PE

Memory
layout

Selection Crossbar

Buffer 
G

roupsCt
rl

Cycle X

X+1

Memory Interface

Fig. 7: An example of layout converter on the read (left) and
the writeback (right) sides.

writeback stage, since the output activation will be used as
input activation in next layer, the layout of the writeback data
should be the same as the input activation. The mismatched
layout would cause low burst length when the data are loaded
in next layer which will result in low bandwidth utilization.

To address the bandwidth and layout mismatch problem, we
design a layout converter to eliminate the mismatch. Fig. 7
presents an example of the proposed converter in the case
of 128-bit AXI bus and BRAMs with a 32-bit bandwidth.
Combining the BRAMs to write 128 bits in parallel is simple
but not flexible because the architecture varies for different
DNN models in our general framework. Alternatively, we use
four 128-in-32-out FIFOs to match the bandwidth. If all these
FIFOs containing different tiles are not empty most of the
time, the output side (to PE array) can approximately achieve
the 128-bit bandwidth. For the writeback side, we should keep
all the activations in memory with the same data layout and
also match the bandwidth between the memory interface and
PE array (6 versus 4 in the example of Fig. 7). Therefore,
another layout converter is applied to match the bandwidth
difference between PBUF fetching and memory writing and
convert the data layout of output activation.

V. EVALUATION

A. Experiment Setup

a) Target Models: The DNN models we test are:
AlexNet [29], MobileNet-v2 [30], ResNet-50 [31],
VGG16 [32], and YOLO-v2 [33]. To differentiate the
input size of the same model, we add the input size as postfix
to the model. e.g., AlexNet 227 is the AlexNet with input
size of 227× 227. We target 8-bit and 16-bit fixed-point data
widths for all models. All results are obtained with batch size
set to 1.

b) Target Platforms: We target three hardware platforms
from embedded devices to cloud accelerator cards: Ultra96,
ZCU102, and U200. Both Ultra96 and ZCU102 are Zynq
devices, here we set the target data bus width of them as



TABLE III: Schedule performance on different model-platform combinations.

Model Data
width

Ultra96 ZCU102 U200
Theoretical

Latency†
Schedule
Latency†

Norm.
Perf.‡

Theoretical
Latency†

Schedule
Latency†

Norm.
Perf.‡

Theoretical
Latency†

Schedule
Latency†

Norm.
Perf.‡

AlexNet 227 8 5204 6059 1.164 4043 4154 1.027 1028 1103 1.073
16 10407 11559 1.111 8085 8315 1.028 2056 2234 1.087

MobileNet-v2 192 8 859 979 1.140 852 882 1.035 213 222 1.042
16 1717 1851 1.078 1704 1778 1.043 426 599 1.406

MobileNet-v2 224 8 1096 1305 1.191 1080 1158 1.072 270 288 1.067
16 2191 2529 1.154 2159 2568 1.189 540 573 1.061

ResNet-50 224 8 5762 7743 1.344 3315 3353 1.011 855 910 1.064
16 11524 14361 1.246 6630 6942 1.047 1709 1736 1.016

VGG16 224 8 29615 36115 1.219 11691 12318 1.054 3405 3956 1.162
16 59230 78433 1.324 23381 24646 1.054 6810 7365 1.081

YOLO-v2 448 8 24909 34963 1.404 6435 6576 1.022 1854 2200 1.187
16 49818 77016 1.546 12870 13161 1.023 3708 3877 1.046

† The unit of latency is 103 cycle. ‡ Norm. Perf. refers to schedule latency that is normalized by theoretical latency. The lower the better.

128-bit, which is the maximum AXI port width from PL to
DDR on Zynq devices. U200 has a direct connection to on-
board DDR4 memory. Here we target 512-bit data bus width
on U200, which is the maximum AXI port width of one Xilinx
Memory IP. We pack two MACC operations in one DSP for
8-bit data width to further improve throughput.

c) GP Solver: As discussed in Section III-D, we solve
the optimization programs in two stages. The relaxed program
in the first stage is solved by GPKit [34]. The rounded integer
program in the second stage is solved by SCIPOpt [35].

B. Search Time

We compare the search time of proposed relaxation-
rounding algorithm with other methods in Table IV. We
evaluate the operation scheduling of conv1 in ResNet-50 with
3 different approaches: Method 1 is the proposed relaxation-
rounding algorithm which searches in rounded space with
MIGP solver. Method 2 searches directly in original space
with MIGP solver. Method 3 searches in rounded space
exhaustively by iterating all valid designs in the search space.
The rounding range R is fixed to 3 for all variables in this
section. The effect of R will be discussed in detail later.

By comparing method 2 to method 1, we observe that the
proposed rounding scheme significantly decreases the search
space. With the rounded search space, search time is saved by
500×. Comparing method 3 to method 1, the rounded space
is too large for exhaustive search to get the solution. We run
the exhaustive search with 32 threads and each thread can
evaluate ∼ 4000 designs per second. The estimated search

TABLE IV: Comparison of search time with other methods
on the same operation scheduling task. The number after the
search space gives the total number of valid designs of the
search space. Relaxation-rounding algorithm can significantly
reduce the search space. The MIGP formulation can help the
solver to search effectively compare to exhaustive search.

# Search space Search method Time (sec)
1 Rounded (7.36× 1012) MIGP 0.33
2 Original (2.28× 1040) MIGP 164.69
3 Rounded (7.36× 1012) Exhaustive search 5.75× 107

1.00

1.02

1.04

1.06

1.08

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

1017 1018 1019 1020 1021 1022 1023 1024 1025

Search Space

0

1000

2000

3000

4000

Se
ar

ch
 T

im
e(

se
c)

Search Time
Normalized Performance

Fig. 8: Effect of search space. Normalized performance is the
execution latency of produced schedule that is normalized by
the theoretical minimal latency on target platform. Both search
time and normalized performance are the lower the better.

time still reaches thousands of days for just one layer. On the
other hand, the relaxation-rounding algorithm helps the solver
to search more efficiently.

C. Search Space

The MIGP problem is solved efficiently with the relaxation-
rounding algorithm. However, the adjustable search space af-
fects not only the search time but also the quality of produced
schedules. To show the effect of search space on search time
and produced schedules. We evaluate the operation scheduling
of all layers in ResNet-50 with different search spaces. The
search space is adjusted by the rounding range R that is
mentioned in Alg.1. The results are shown in Fig. 8.

As the search space increases, more feasible schedules will
be evaluated and thus may produce better schedules. However,
the search time also increases. As search space increases 108×
from the smallest one to the largest one in the figure, the
search time increases 14.6×. However, it only improves the
performance of the whole model by 4%. By breaking down the
performance of each layer, we observe that some layers already
have good enough performance even when the search space
is small. Only a few layers get performance improvement
from the increased search space. Manually adjusting search
space of each layer for infinite model-platform combinations
is unpractical. Instead, we monitor the progress of the solver
and adjust the search space adaptively.



TABLE V: Hardware performance of AGNA and comparison with other DNN Accelerators.

Model Bus
width

Data
width Platform Frequency

(MHz)
DSP

utilization
BRAM

utilization Performance

DNNBuilder [14] AlexNet 512‡ 16 ZC706 200 808/900 303/545 170.0 fps
VGG16 -‡ 16 KU115 235 4318/5520 1578/2160 65.0 fps

DNNExplorer [36] VGG16-conv† -‡ 16 KU115 200 4444/5520 1648/2160 55.4 fps

FlexCNN [37] VGG16-conv† 512‡ 16 U250 241 37.98%§ 45.93%§ 19.89 ms
VGG16-conv† 512‡ 8 U250 198 8.7%§ 58.43%§ 13.18 ms

Vitis AI [38]

MobileNet-v2 2×128 8 Ultra96 287 326/360 126/216 10.17 ms
ResNet50 2×128 8 Ultra96 287 326/360 126/216 30.80 ms
MobileNet-v2 2×128 8 ZCU102 281 2130/2520 765/912 3.73 ms
ResNet50 2×128 8 ZCU102 281 2130/2520 765/912 11.45 ms
VGG16 2×128 8 ZCU102 281 2130/2520 765/912 49.63 ms

AGNA (ours)

MobileNet-v2¶ 128 8 Ultra96 214 354/360 153/216 8.42 ms
ResNet50 128 8 Ultra96 214 358/360 153/216 68.97 ms
VGG16 128 8 Ultra96 214 354/360 136/216 176.91 ms
MobileNet-v2¶ 128 8 ZCU102 214 2365/2520 632/912 6.98 ms
ResNet50 128 8 ZCU102 214 2429/2520 509/912 21.71 ms
VGG16 128 8 ZCU102 214 2303/2520 737/912 79.04 ms

† Fully connected layers are not implemented. ‡ Referenced from their source code. § Only percentage is reported.
¶ MobileNet-v2 224 is used for fair comparison.

D. Schedule Performance

Table III lists the schedule performance of all target model-
platform combinations. The theoretical latency is measured
by max(commtheo, comptheo). commtheo is the minimal re-
quired cycle to finish all data transfer between accelerator
and external memory. commtheo is bounded by the data bus
width. comptheo is the minial required cycle for accelerator
to finish all computations. comptheo is bounded by the total
number of DSP on target platform. The schedule latency is
measured based on the produced schedule O on the target
architecture A. Theoretical latency indicates the theoretical
minimal latency that the platform can achieve. By normalizing
schedule latency with theoretical latency, we can evaluate how
close the produced accelerator is to the theoretical model.
This value also indicates the DSP utilization and bandwidth
efficiency of produced accelerators. Given that the average
normalized performance among all combinations is 1.127,
the proposed DSE framework is effective in a wide range of
model-platform combinations.

Though most of the normalized performance are close to
1, we still observe that Ultra96 underperforms in general
compared to other platforms. This is caused by the limited
on-chip memory resources in Ultra96. In this case, loops are
tiled into smaller chunks to ensure that data can fit into buffer
capacity. When loop tiles are small, data is less reused, which
needs more data exchange and results in a more memory-
bound schedule. Thus the performance on Ultra96 is even
worse in large models like YOLO-v2.

E. Hardware Evaluation

By customizing the accelerator template with parameters
solved by the proposed DSE, AGNA can produce accelerator
that is optimized for target model-platform combination. We
evaluate the end-to-end latency of produced accelerators and
show the performance in Table V. The produced accelerators
achieve 96.3% DSP utilization and 68.4% BRAM utilization
on average without timing violation.

We compare our work with other FPGA DNN accelerators
in Table V. DNNBuilder and DNNExplorer design dedicated
modules for part of the layers and a generic module for the
remaining layers. They achieve high throughput by optimizing
the bandwidth allocation of pipelined modules. Such layer
pipeline design is not suitable for very deep networks. On the
other hand, our DSE framework has no limitation on the depth
of the target network. FlexCNN proposes a versatile systolic
array and supports various convolution operations. They use
exhaustive search to determine the parameters of systolic array
and greedy algorithm to schedule each layer. Exhaustive search
is realizable in FlexCNN since the design space of systolic
array has only 3 variables. In terms of resource utilization,
FlexCNN underutilizes the on-chip DSP, especially in the case
of 8-bit data width where the computations are implemented
on LUT by HLS. Instead, our framework is able to produce
accelerators with high DSP utilization without compromising
frequency. We also compare our work with Vitis AI, a Xilinx
AI accelerator library for non-commercial usage only. Vitis
AI provides DPU as the core component for acceleration.
DPU is highly optimized for Xilinx devices and has the
highest frequency among other works. DPU also uses two data
buses for loading data resulting in 2× bandwidth. We already
outperform DPU on MobileNet-v2 on Ultra96, even without
such optimizations in our current hardware template. With the
optimization of hardware template in the future, AGNA will
produce comparable performance.

VI. CONCLUSION

In this paper, we have presented AGNA, an open-source
deep neural network (DNN) accelerator hardware and software
generator for FPGA platforms. AGNA relies on the two
proposed MIGP formulations and their relaxed solutions to
perform DSE in customizing a generic accelerator template
for the given network model-platform combination. Through
extensive experiments using many combinations of DNN mod-
els and platforms, we have demonstrated AGNA’s capability



to produce DNN accelerators with performance compara-
ble to the state-of-the-art in research and vendor-provided
frameworks. Importantly, although the accelerators produced
currently may not be the fastest in all model-platform combi-
nations, AGNA is vendor-agnostic and is designed to be easily
extensible, making it suitable for real-world deployments and
serving as a basis for future research. In the future, we plan
to improve AGNA with advanced scheduling capability to
work with multi-bank memories, as well as to improve its
performance through low-level hardware optimizations. We
also plan to explore novel network model quantization and
pruning techniques by leveraging the processing architecture
and scheduling capabilities of AGNA.

ACKNOWLEDGMENT

This work was supported in part by the Research Grants
Council (RGC) of Hong Kong under the Research Impact Fund
project R7003-21. This work was also supported by AI Chip
Center for Emerging Smart Systems (ACCESS), sponsored by
InnoHK funding, Hong Kong SAR.

REFERENCES

[1] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides,
“LUTNet: Rethinking Inference in FPGA Soft Logic,” in 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2019, pp. 26–34.

[2] M. Wang, K. C. M. Lee, B. M. F. Chung, S. V. Bogaraju, H.-C. Ng,
J. S. J. Wong, H. C. Shum, K. K. Tsia, and H. K.-H. So, “Low-Latency
In Situ Image Analytics With FPGA-Based Quantized Convolutional
Neural Network,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, no. 7, pp. 2853–2866, 2022.

[3] Q. Huang, D. Wang, Z. Dong, Y. Gao, Y. Cai, T. Li, B. Wu,
K. Keutzer, and J. Wawrzynek, “CoDeNet: Efficient Deployment
of Input-Adaptive Object Detection on Embedded FPGAs,” in The
2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 206–216. [Online]. Available:
https://doi.org/10.1145/3431920.3439295

[4] Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gambardella,
M. Blott, L. Lavagno, K. Vissers, J. Wawrzynek, and K. Keutzer,
“Synetgy: Algorithm-Hardware Co-Design for ConvNet Accelerators
on Embedded FPGAs,” in Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 23–32. [Online]. Available: https://doi.org/10.1145/
3289602.3293902

[5] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “FP-BNN: Binarized
neural network on FPGA,” Neurocomputing, vol. 275, pp. 1072–
1086, 2018. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0925231217315655

[6] Y. Zhang, J. Pan, X. Liu, H. Chen, D. Chen, and Z. Zhang,
FracBNN: Accurate and FPGA-Efficient Binary Neural Networks
with Fractional Activations. New York, NY, USA: Association
for Computing Machinery, 2021, p. 171–182. [Online]. Available:
https://doi.org/10.1145/3431920.3439296

[7] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating Binarized Convolutional Neural
Networks with Software-Programmable FPGAs,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 15–24. [Online]. Available:
https://doi.org/10.1145/3020078.3021741

[8] Z. Dong, Y. Gao, Q. Huang, J. Wawrzynek, H. K. So, and K. Keutzer,
“HAO: Hardware-aware Neural Architecture Optimization for Efficient
Inference,” in 2021 IEEE 29th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2021, pp.
50–59.

[9] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m.
Hwu, and D. Chen, “FPGA/DNN Co-Design: An Efficient Design
Methodology for IoT Intelligence on the Edge,” in Proceedings of
the 56th Annual Design Automation Conference 2019, ser. DAC ’19.
New York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3316781.3317829

[10] M. S. Abdelfattah, L. Dudziak, T. Chau, R. Lee, H. Kim, and N. D.
Lane, “Best of Both Worlds: AutoML Codesign of a CNN and Its
Hardware Accelerator,” in Proceedings of the 57th ACM/EDAC/IEEE
Design Automation Conference, ser. DAC ’20. IEEE Press, 2020.

[11] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun,
W. Zhang, and J. Cong, “FP-DNN: An Automated Framework for
Mapping Deep Neural Networks onto FPGAs with RTL-HLS Hybrid
Templates,” in 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2017, pp.
152–159.

[12] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and
J. Cong, “Automated Systolic Array Architecture Synthesis for High
Throughput CNN Inference on FPGAs,” in Proceedings of the 54th
Annual Design Automation Conference 2017, ser. DAC ’17. New
York, NY, USA: Association for Computing Machinery, 2017. [Online].
Available: https://doi.org/10.1145/3061639.3062207

[13] A. Montgomerie-Corcoran, Z. Yu, and C.-S. Bouganis, “SAMO:
Optimised Mapping of Convolutional Neural Networks to Stream-
ing Architectures,” in 2022 32nd International Conference on Field-
Programmable Logic and Applications (FPL), 2022, pp. 418–424.

[14] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“DNNBuilder: an Automated Tool for Building High-Performance DNN
Hardware Accelerators for FPGAs,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Nov 2018, pp. 1–8.

[15] Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-DNN:
An Open Framework for Mapping DNN Models to Cloud FPGAs,”
in Proceedings of the 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’19. New York,
NY, USA: Association for Computing Machinery, 2019, pp. 73–82.
[Online]. Available: https://doi.org/10.1145/3289602.3293915

[16] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li,
Z. Guan, D. Chen, and Y. Lin, “AutoDNNchip: An Automated
DNN Chip Predictor and Builder for Both FPGAs and ASICs,”
in Proceedings of the 2020 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’20. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 40–50.
[Online]. Available: https://doi.org/10.1145/3373087.3375306

[17] W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, and J. Cong, “Improving
High Level Synthesis Optimization Opportunity through Polyhedral
Transformations,” in Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’13. New
York, NY, USA: Association for Computing Machinery, 2013, p. 9–18.
[Online]. Available: https://doi.org/10.1145/2435264.2435271

[18] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
P. Sadayappan, and N. Vasilache, “Loop Transformations: Convexity,
Pruning and Optimization,” in Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 549–562. [Online]. Available:
https://doi.org/10.1145/1926385.1926449

[19] J. Wang, L. Guo, and J. Cong, AutoSA: A Polyhedral Compiler for
High-Performance Systolic Arrays on FPGA. New York, NY, USA:
Association for Computing Machinery, 2021, p. 93–104. [Online].
Available: https://doi.org/10.1145/3431920.3439292

[20] Q. Huang, A. Kalaiah, M. Kang, J. Demmel, G. Dinh, J. Wawrzynek,
T. Norell, and Y. S. Shao, “CoSA: Scheduling by Constrained Opti-
mization for Spatial Accelerators,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), 2021, pp.
554–566.

[21] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on
geometric programming,” Optimization and engineering, vol. 8, no. 1,
pp. 67–127, 2007.

[22] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[23] Q. Liu, T. Todman, W. Luk, and G. A. Constantinides, “Optimizing
Hardware Design by Composing Utility-Directed Transformations,”
IEEE Transactions on Computers, vol. 61, no. 12, pp. 1800–1812, 2012.

https://doi.org/10.1145/3431920.3439295
https://doi.org/10.1145/3289602.3293902
https://doi.org/10.1145/3289602.3293902
https://www.sciencedirect.com/science/article/pii/S0925231217315655
https://www.sciencedirect.com/science/article/pii/S0925231217315655
https://doi.org/10.1145/3431920.3439296
https://doi.org/10.1145/3020078.3021741
https://doi.org/10.1145/3316781.3317829
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3289602.3293915
https://doi.org/10.1145/3373087.3375306
https://doi.org/10.1145/2435264.2435271
https://doi.org/10.1145/1926385.1926449
https://doi.org/10.1145/3431920.3439292


[24] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K. Cheung, “Com-
bining Data Reuse With Data-Level Parallelization for FPGA-Targeted
Hardware Compilation: A Geometric Programming Framework,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 3, pp. 305–315, 2009.

[25] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. Cheung, “Com-
piling C-like Languages to FPGA Hardware: Some Novel Approaches
Targeting Data Memory Organization,” The Computer Journal, vol. 54,
no. 1, pp. 1–10, 2011.

[26] J. Liu, J. Wickerson, and G. A. Constantinides, “Tile size selection for
optimized memory reuse in high-level synthesis,” in 2017 27th Inter-
national Conference on Field Programmable Logic and Applications
(FPL), 2017, pp. 1–8.

[27] J. Shan, M. R. Casu, J. Cortadella, L. Lavagno, and M. T. Lazarescu,
“Exact and Heuristic Allocation of MuIti-kernel Applications to Multi-
FPGA Platforms,” in 2019 56th ACM/IEEE Design Automation Confer-
ence (DAC), 2019, pp. 1–6.

[28] Y. Fu, E. Wu, A. Sirasao, S. Attia, K. Khan, and R. Wittig, “Deep
Learning with INT8 Optimization on Xilinx Devices White Paper
(WP485),” Xilinx White Paper, 2016.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds., vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[32] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2015. [Online]. Available: http://arxiv.org/abs/1409.1556

[33] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[34] E. Burnell, N. B. Damen, and W. Hoburg, “GPkit: A Human-Centered
Approach to Convex Optimization in Engineering Design,” in Proceed-
ings of the 2020 CHI Conference on Human Factors in Computing
Systems, 2020.

[35] S. Maher, M. Miltenberger, J. P. Pedroso, D. Rehfeldt, R. Schwarz, and
F. Serrano, “PySCIPOpt: Mathematical Programming in Python with
the SCIP Optimization Suite,” in Mathematical Software – ICMS 2016.
Springer International Publishing, 2016, pp. 301–307.

[36] X. Zhang, H. Ye, J. Wang, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“DNNExplorer: A Framework for Modeling and Exploring a Novel
Paradigm of FPGA-Based DNN Accelerator,” in Proceedings of the
39th International Conference on Computer-Aided Design, ser. ICCAD
’20. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3400302.3415609

[37] S. Basalama, A. Sohrabizadeh, J. Wang, L. Guo, and
J. Cong, “FlexCNN: An End-to-End Framework for Composing
CNN Accelerators on FPGA,” ACM Trans. Reconfigurable
Technol. Syst., dec 2022, just Accepted. [Online]. Available:
https://doi.org/10.1145/3570928

[38] “Vitis-AI/models/AI-Model-Zoo,” https://github.com/Xilinx/Vitis-AI/
tree/master/models/AI-Model-Zoo, accessed: 2021-11-20.

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://arxiv.org/abs/1409.1556
https://doi.org/10.1145/3400302.3415609
https://doi.org/10.1145/3570928
https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo
https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo

	Introduction
	Background & Related Work
	DNN Accelerator on FPGA
	Geometric Programming

	DSE Methodology
	Abstraction Methodology
	Operation Abstraction
	Architecture Abstraction
	Scheduling Methodology

	Architecture Search
	Resource Utilization
	Latency Model
	Optimization Program of Architecture Search

	Operation Scheduling
	Loop Bound Constraints
	Spatial Constraints
	Memory Utilization
	Computation Cycle
	Communication Cycle
	Optimization Program of Operation Scheduling

	Solving Algorithm
	Transformation
	Relaxation
	Rounding


	Hardware Template
	Overall Architecture
	Processing Element (PE)
	PE controller
	DSP array

	Layout Converter

	Evaluation
	Experiment Setup
	Search Time
	Search Space
	Schedule Performance
	Hardware Evaluation

	Conclusion
	References

