Image Super-resolution for Ultrafast Optical Time-stretch Imaging

Edmund Y. Lam
The University of Hong Kong, Hong Kong

Presentation Outline

- Introduction of Time-stretch Imaging
- Modeling the Image Sampling
- Super-resolution with Subpixel Shift
- Evaluation Simulation
- Experiment Results
- Summary & Future Work

Time-stretch Imaging

Application

- Ultrafast optical microscopy
 - High-throughput microfluidic (8 m/s)
 - 100,000 cells/s
 - >10 MHz line scanning rate
 - Real-time imaging
- Connected with digital system
 - Cancer cell detection
 - Precision Medicine
- Challenges
 - Expensive oscilloscope
 - HKD 1,000,000
 - Huge data processing
 - 80 GB/ sec
- Next: Home-built system

Time-stretch Imaging System

Modeling of Image Sampling

- Line Scanning and Time Stretch (Optical System)
 - Fixed frequency line scanning (colorful bands on the cell image)
 - Time-stretch the spatially-encoded signal, generate the continuous signal
- Normal Line-aligned Sampling (High-speed ADC)
 - Uniformly sampling the time-stretched signal (3 sampling points per line in following example)
 - Digitize the samples from analog signal to 8-bits grey-scale pixel data
- 2D Image Stack (FPGA, Field Programmable Gate Array)
 - Construct the cell image

Sampling Model Parameters

Parameters set in line-aligned sampling

	Parameters	Denotation	Sample Value	350x
The slower, the more information be caught in vertical	Laser Pulse Frequency (fixed)	f_{laser}	11.4 MHz 🛑	Sampling 350 points per line
	ADC Sampling Frequency	$f_{sampling}$	3.99 GHz	
Spatial imaging range in horizontal	Flow Rate	v_{flow}	1 m/s	
	Imaging Width	Width	250 μm	

Calculation of digitized image resolution (unit: pixel/µm)

$$R_{horizontal} = \frac{f_{sampling}}{Width \times f_{laser}} \quad R_{vertical} = \frac{f_{laser}}{v_{flow}}$$

$$\frac{\text{Variables}}{\text{Image Resolution (Horizontal)}} \quad \frac{\text{Denotation}}{R_{horizontal}} \quad \frac{\text{Sample Value}}{\text{1.4 pixel/}\mu\text{m}}$$

$$\frac{\text{-8x unbalanced}}{\text{H/V resolution}} \quad \frac{\text{H/V resolution}}{\text{Image Resolution (Vertical)}} \quad \frac{R_{vertical}}{R_{vertical}} \quad \frac{1.4 \text{ pixel/}\mu\text{m}}{\text{1.4 pixel/}\mu\text{m}}$$

Unbalanced H/V Resolution

Demonstration of unbalanced H/V resolution image, image is sampled more tightly in vertical direction

MCF-7 (breast cancer cell) imaging with line-aligned sampling method, sampling frequency is 3.99 GHz. Jagged-edge is apparent in horizontal direction

How to optimize the sampling?

- Method Constraints
 - Only slightly adjust the ADC sampling frequency, but still sampling line scans uniformly
 - No computation overhead (complicate interpolation computation), because of the ultrafast throughput (4GB/s)
 - Acceptable data increment
- Method Assumption
 - Combine several lines into one line
 - Different with line-aligned sampling, sampling points between lines should be shifted / interleaved

Super-resolution with Subpixel Shift

Adjust the sampling frequency (T to T+ΔT)

- Previous **line-aligned sampling:** 3 points per line (in previous example picture)
- Super-resolution sampling: 8 points per 3 lines (in this example picture), not integer sampling points per line
- new co-prime parameters: {p, q}

Interleave samples of every q lines to one super-resolution line

- Interleave pattern repeats every q lines
- In the example picture, **horizontal** resolution will be ~3x **higher** (with the subpixels); **vertical** resolution will be ~3x **lower**

Super-resolution Sampling

Relations of parameters in super-resolution sampling

- Sampling frequency is decided by {p, q} and laser frequency, also should be constrained at ~4GHz.
- q decides spatial line number that used to generate the super-resolution line.
 Case q=1 is equivalent to the normal line-aligned sampling
- Hence, p is a proper number that constrained by q and sampling / laser frequency.

$$f_{sampling} = f_{laser} \times p/q$$

$$R_{horizontal} = \frac{p}{Width}$$

$$R_{vertical} = \frac{f_{laser}}{v_{flow} \times q}$$

Parameters	Previous	Super-resolution
p, q	350,1	1024, 3
$f_{sampling}$	3.99 GHz	3.89 GHz
$R_{horizontal}$	1.4 pixel/µm	4.1 pixel/µm
$R_{vertical}$	11.4 pixel/µm	3.8 pixel/µm

Next Step: Choose a proper q

Evaluation of different {p, q}

- Sampling simulation with different {p, q}
 - Motivation of this evaluation: Choose a proper q value
 - Source image: sampled with 80GSa/s oscilloscope, crop the cell area, 340 pixel/line
 - Down-sampling the image ~20x to ~4GSa/s, ~17 sample points / line, (p/q≅17)
 - Reshape the 2D image to a whole line and do 1D down-sampling
 - Case {p=17, q=1} is the normal line-aligned sampling
 - The other cases are super-resolution with subpixel shift, with different {p, q} set, similar sampling frequency

Frequency Domain Analysis

Analyze the previous simulation results in frequency domain

Motivation of the analysis:

- Verify that the high frequency information is revealed by the super-resolution (make cell texture clearer)
- Evaluation the error that introduced by the sub-pixel shift (theoretically error increase as the q becomes bigger)

Fourier Transform in analysis

- Firstly, reshape the 2D image to a whole 1D line
- 1D Fourier Transformation to 1D frequency domain, because the image is sampled line by line

Based on Nyquist-Shannon sampling theorem

- MAX frequency in source image = 40 GHz (sampling frequency is 80 GHz)
- MAX frequency in line-aligned sampled image (q=1) = 2 GHz (sampling frequency is 4 GHz)
- MAX frequency in image with super-resolution = 2*q GHz (With the super-pixels, we assume the equivalent sampling frequency increases)

Error Analysis

- Replace the shifted sub-pixels with the original ones in the corresponding position of source image
- Do the same Fourier Transform to get accurate frequency domain information
- Calculate the error introduced by sub-pixel shift

Frequency Analysis Results

Experiment Results

MCF-7 (breast cancer cell) imaging with line-aligned sampling method, sampling frequency is 3.99 GHz.

Parameters	Value	Variable	Value
p, q	350, 1	$R_{horizontal}$	1.4 pixel/µm
$f_{sampling}$	3.99 GHz	$R_{vertical}$	11.4 pixel/µm
Interleave	No		

MCF-7 imaging with the proposed super-resolution method, sampling frequency is 3.89 GHz.

Parameters	Value	Variable	Value
p, q	1024, 3	$R_{horizontal}$	4.1 pixel/µm
$f_{sampling}$	3.89 GHz	$R_{vertical}$	3.8 pixel/µm
Interleave	Yes		

Summary & Future Work

Super-resolution in cellular imaging

- Slightly adjust the sampling frequency
- No sampling data increment
- Acceptable interleave computation
- Obvious image quality improvement

Future Work

Proper interpolation to eliminate the jagged edge

Thanks.