
Architecture Generator for Type-3 Unum Posit

Adder/Subtractor

Manish Kumar Jaiswal1, and Hayden K.-H So2

Dept. of EEE, The University of Hong Kong, Hong Kong;

Email: 1manishkj@eee.hku.hk, 2hso@eee.hku.hk

Abstract—This paper is aimed towards the hardware architec-
ture aspect of a recently proposed posit number system under
type-3 unum (universal number system). Here, an algorithmic
flow for the posit addition/subtraction arithmetic is developed
and its hardware architecture is designed. Compare to floating
point, posit provides better dynamic range and accuracy over
same word size, along with more accurate and exact arithmetic
support. Posit format includes a run-time varying exponent
component, provided by a combination of regime-bits (of run-time
varying length) and exponent-bits (of size up to ES bits). Thus,
the mantissa precision also varies at run-time. This provides
a combination of dynamic range and precision under a given
word size (N). This possible variation in format along dynamic
range and precision may attract various applications with dif-
ferent(accuracy and dynamic range) requirement. However, this
run-time variation in posit format also poses a hardware design
challenge. So, this paper is aimed towards the construction of an
open-source parameterized Verilog HDL (Hardware Description
Language) generator for posit adder/subtractor arithmetic, with
parameterized N and ES.

Keywords-Unum, Posit, FPGA, Multi-Precision, Digital Arith-
metic, Adder, Subtractor.

I. INTRODUCTION

Unum (Universal number system) has been recently pro-

posed by Gustafson et al. [1], [2], [3]. It is developed in

a series of evolution as type-1 unum [1], [4], [5], type-2

unum [2], [6], and recently announced type-3 unum [3], [7].

The posit number system is proposed as type-3 unum. The

unum proposal has created a significant amount of interest

in the community. Unum is claimed to be developed as an

alternative to the contemporary Floating point standard [8].

It is claimed to be providing various significant benefits over

traditional Floating Point standard, including better dynamic

range and accuracy over same bit field, more accurate and

exact arithmetic computations. More details on these claims

can be sought from above Unum references.

To the best of authors knowledge, no hardware valida-

tion is yet available for any format for unum. Thus, this

paper is aimed towards the hardware generation of recently

developed posit unum system. Currently, it is focused for

addition/subtraction arithmetic.

Compare to type-1 and type-2 unum, posit is more closer to

the floating point standard in terms of representation. However,

it includes an extra field of regime bits along with exponent

bits (of size ES), and both collectively contribute to the total

effective exponent value. The regime bits size varies at run-

time, which provides a run-time variation in exponent com-

ponents as well as mantissa component positions. Due to this

run-time variations, posit provides various options of dynamic

range, and varying mantissa precision bits. As claimed and

shown (with several example cases) by the developers, this

kind of available choices would be beneficial for a variety of

applications having a different set of requirements on dynamic

range and accuracy. A brief detail on posit format is discussed

in the next section.

The run-time variation in the posit format poses a key

hardware design challenge for its packing and unpacking. The

architecture requires a significant amount of dynamicity, and

further, the inclusion of parameterization in its architectural

modeling (along with other sub-components) includes another

level of design challenge.

In view of above discussion, this paper is aimed for a

hardware algorithmic flow for posit adder arithmetic and

demonstrated its architectural implementation on FPGA as

well as ASIC platforms. It is also aimed for an open-source

Verilog HDL generator for posit adder arithmetic, which can

generate Verilog HDL for desired word size (N) with desired

exponent size (ES).

The main contributions of the present work can be summa-

rized as follows:

• Proposed an algorithmic flow for hardware architecture

of posit adder arithmetic.

• An open-source Verilog HDL generator is also modeled

for it.

• Demonstrated the implementation details with 8-bit, 16-

bit and 32-bit posit adder architecture with varying expo-

nent size (ES).

II. PRELIMINARY

A brief basic of posit is presented here which is directly

based on the original posit literature [3]. An N-bit posit is

defined by its exponent size (ES). The structure of posit format

includes a Sign bit, Regime bits, Exponent bits, and Mantissa

bits. Compare to floating point standard [8], posit includes an

extra field as regime bits. The Sign bit in posit is 0 for positive

numbers and 1 for negative numbers. For the case of negative

number, first take 2’s complement before decoding regime,

exponent and mantissa bits.

Sign
︷︸︸︷

s

Regime bits
︷ ︸︸ ︷

r r r · · · r r r r̄

Exponent bits, i f any
︷ ︸︸ ︷

e1 e2 e3 · · · ees

Mantissa bits, i f any
︷ ︸︸ ︷

f1 f2 f3 · · · · · · .
(1)

Posit format has only one ZERO, represented by all bits with

0 value, and only one Infinity, represented by all, but Sign bit,

with 0 value. It does not consider any NaN (not a number)

representation. Also, posit does not consider sub-normal or de-

normal representation, ie. all values are normalized numbers.

The regime bits are a binary string of either all 0 or all

1 terminated by an opposite bit. Regime bits can be of any

length and its numerical value determined by the run length

of the regime bits. With a string of m-bit 0 terminated by

(m+1)th bit as 1 (-ve sequence), it gives a value of (-m)

and with a string of m-bit 1 terminated by (m+1)th bit as

0 (+ve sequence), it gives a positive value of (m-1). Few

examples, a regime bit sequence of 00001 gives a -4 value

and a sequence of 11110 gives a value of +3. For a regime

value of k, it contributes as (2(2
ES))k, as part of total effective

exponent value. The exponent bits are an unsigned integer

with no BIASing, and it can be up to ES bits based on the

availability at the right side of regime bits. With a value of

e, it contributes as 2e in total effective exponent. Mantissa

bits function similar to the normalized floating point standard,

and remaining bits (if available) after regime and exponent

are occupied by it. Thus, with a regime value of k, exponent

value of e and mantissa value of f (including hidden bit 1), the

equivalent decimal value would be s ∗ (2(2
ES))k ∗ 2e ∗ f ,

except the zero (000. . . 000) and infinity (1000. . . 000) rep-

resentation. Few examples for decimal equivalent of 8-bit

posit (P) are as follows (sign, regime, exponent and mantissa

field are separated for easy understanding, and negative values

are first converted into 2’s complement before decoding).

With ES=2: 0_0001_11_1 = +(24)−3× 23× (1+ 1.0
2
), and

11101011 → 0_001_01_01 = − (24)−2 × 21 × (1 + 1.0
4
),

With ES=3: 0_110_101_1 = +(28)1× 25× (1+ 1.0
2
), and

10001111→ 0_1110_001 = − (28)2×21× (1+0.0).
As seen in above discussion, for a given ES the mantissa

size varies in posit representation. This variation in mantissa

size with respect to ES is shown in Fig 1 for N=8 posit. It

can be seen that posit representation founds more fraction bits

around ±1.

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

Infinity at 0x80

+1 at 0x40 -1 at 0xC0

M
a

n
ti
s
s
a

 B
it
s

8-bit Posit Binary Value

es=0
es=1
es=2
es=3

Fig. 1: Variation of Mantissa Size with respect to Exponent

Size (ES) in 8-bit Posit format.

III. PROPOSED POSIT ADDER ALGORITHMIC FLOW AND

ARCHITECTURE

The proposed parameterized algorithmic computational flow

for posit addition is shown in algorithm-1. The major blocks in

this include Data Extraction: which extracts the sign, regime-

bit, exponent-bit, and mantissa information from the input

operands; Core Adder Arithmetic Processing: which deals with

the mantissa addition and final regime & exponent computa-

tion; followed by the Data Composition and Post-Processing:

which combine sign, regime, exponent, mantissa, and perform

rounding. This same computation flow can be used for posit

subtraction also, after negating the second operand.

Algorithm 1 Proposed Adder Arithmetic Flow for Posit

1: GIVEN:
2: N: Posit Word Size
3: ES: Posit Exponent Field Size
4: RS: log2 (N) (Posit Regime Value Store Space Bit Size)
5: Input Operands: IN1, IN2
6: Data Extraction:Sign (S), Regime (R), Exponent (E), Mantissa (M), Exceptions

(Infinity (Inf), Zero (Z))
7: Z← Z1&Z2, (Z1 = |IN1, Z2 = |IN2, i.e. All bits of IN1, IN2 are 0)
8: In f ← In f 1|In f 2, (All bits except MSB are 0)
9: Extraction from IN1:

10: S1← IN1[N-1]
11: XIN1← S1 ? − IN1[N−2 : 0] : IN1[N−2 : 0]
12: Regime Check (RC): (RC1← XIN1[N−2], RC2← XIN2[N−2])
13: Leading One Detection (LOD) of XIN1[N-2:0] (→ K0)
14: Leading Zero Detection (LZD) of XIN1[N-3:0] (→ K1)
15: Regime Value: R1← RC1 ? K1 : K0
16: Regime Left Shift Amount: Lshi f t← RC1 ? K1+1 : K0
17: Left Shift XIN1 by Lshift amount → XIN1_tmp
18: E1 ← MSB E-bits of XIN1_tmp
19: M1 ← Remaining bits of XIN1_tmp (Append Hidden Bit as MSB)
20: Extraction from IN2: → S2, R2, E2, M2
21: Core Adder Arithmetic Processing:
22: Effective Operation: OP ← S1 xor S2
23: Check for Large Operand and Small Operand
24: Large (L) Component: LS, LRC, LR, LE, and LM
25: Small (S) Component: SS, SRC, SR, SE, and SM
26: MANTISSA ADDITION:
27: Effective Exponent Difference (Ediff):
28: Ediff ← ((LRC ? LR-(SRC ? SR : -SR) : SR-LR) « ES) +LE-SE
29: Right Shift SM by Ediff amount → SM_tmp
30: Add LM and SM_tmp:
31: Add_M → OP ? LM + SM_tmp : LM - SM_tmp
32: Mantissa Overflowed: Movf ← Add_M[MSB]
33: Add_M ← Movf ? Add_M : Add_M « 1
34: Normalization of Add_M:
35: LOD of Add_M ← Nshift
36: Add_M ← Add_M « Nshift, (Dynamic Left Shifting by Nshift)
37: Final EXPONENT (E_O) and REGIME (R_O) Computation:
38: LE_O ← Combine LR, LE, Movf and Nshift
39: E_O: ← Based on +/- of LE_O, Compute LSB ES bits from LE_O
40: R_O: ← Based on +/- of LE_O, Compute MSB RS bits from LE_O
41: Data Composition and Post-Processing:
42: REGIME, EXPONENT and MANTISSA Packing:
43: REM ← Append E_O at MSB of ADD_M
44: REM ← Append REGIME bits at MSB, based on the value of R_O
45: REM ← Shift Right by R_O
46: If (LS == 1): negate REM
47: Rounding
48: Final Output:
49: Combine LS with LSB (N-1) bit of rounded REM
50: Discharge Output while considering Exceptions

Based on the algorithm-1, a parameterized Verilog HDL is

constructed which takes posit word size (N) and exponent size

(ES) as its parameter and produces hardware for desired (N

and ES) requirement. Since the regime bits can extend up to

(N-1) bits, RS bits (= Log2N) can accommodate its maximum

absolute numerical value. The proceeding architectural expla-

nation refer to each related lines of algorithm-1.

A. Stage-1: Data-Extraction

Both operands are first checked for ZERO and Infinity value

(Line 7 & 8 in algorithm-1). All bits with 0 leads to zero value,

however, just with a true sign bit it leads to infinity.

The design challenge of posit data unpacking is solved here

along lines 9-20 of algorithm-1 and proceeds as follows:

1) MSB of operands provides respective Sign bits (S1 and S2).

2) For true sign bit, operands undergo 2’s complement conversion
which produces XIN1 and XIN2, each of N-1 bits (except the
respective sign bit).

3) The MSB of XINs depicts the sign of regime value and acts
as Regime Check (RC) bit.

4) A leading zero detector (LZD) is employed to count a sequence
of 1 with terminating 0 and a leading one detector (LOD) is
used to count the sequence of 0 with terminating 1 (one less
than the actual count of 1). RC determines either of K0 or
K1 as R[RS-1:0] (absolute regime value) and regime left shift
amount (Lshift) of respective operands.

5) To extract the exponent and mantissa, the respective XIN is
dynamically left shifted by Lshift to push-out the entire regime
bits and align exponent and mantissa at MSB. Now the MSB
ES bit will act as the exponent and remaining bit would be
mantissa bits.

The parameterized generation of LZD and LOD is based on

their architecture shown in Fig. 2. Both are constructed in a

similar hierarchical manner, except with a different respective

basic 2:1 (LZD/LOD) building block, as shown in Fig. 2.

For dynamic left shifting a parameterized barrel shifter is

constructed with word width (W) and shifting amount (S) as

the parameter. A barrel shifter requires one W-bit 2:1 MUX for

each bit of S. So, here it requires RS numbers of 2:1 MUXs

each of (N-1) bit size.

K[4:0]

in[3:0]

in[7:4]

in[11:8]

in[15:12]

in[31:16]

K[3:0]

K[2:0]

in[3:2] in[1:0]

LZD/LOD 2:1

1 0

K_Hvld_H

{1’b1,K_L}
{1’b0,K_H}

LZD/LOD 2:1

K_Lvld_L

K[1:0]vld

in[0]in[1]

Kvld

in[1]in[0]

Kvld

Fig. 2: LOD and LZD architectural design

B. Stage-2: Core Arithmetic

This stage involves the mantissa addition/subtraction, and

final exponent and regime numerical value computation. The

sign bits of both operands decide the effective operation

(Line 22). A direct comparison of XIN1 and XIN2 gives

the information of large and small operand. It requires an

(N-1) greater-than-equal-to component. Based on this signal,

the large and small components: the LS, SS; LRC, SRC; LR

SR; LE, SE; and LM, SM are computed (Line 24-25), which

require 2:1 MUXs of respective component bits.

To perform actual mantissa arithmetic both mantissa need

to be aligned at the decimal point. For this, smaller mantissa

is dynamically shifted right by the effective difference (Ediff)

of large exponent and small exponent and produces SM_tmp

(Line 29). For Ediff[BS:0] computation, first, an effective

regime value difference (by taking their signs into account) is

performed, which then shifted left by ES bits, and summed

with exponent difference (Line 28) (this is based on the

posit regime and exponent formation standard). Similar to

the dynamic left shifter, a parameterized dynamic right shifter

designed using barrel right shifter

The small shifted mantissa is then added/subtracted from

large mantissa LM by using a N-bit add/sub unit and produces

Add_M (Line 31). Add_M is checked for mantissa overflow

(Movf) by checking its MSB and shifted 1-bit to left accord-

ingly if found false, which requires an N-1 bit 2:1 MUX (Line

32-33). In case Movf is true, final effective exponent value

needs to be incremented by one (Line 38).

In case LM and SM_tmp are two very close value and

effectively undergone a subtraction operation, then Add_M

may lose MSB bits, and it needs normalization. This is

achieved by performing (N-ES) bit LOD operation on Add_M

to get normalization shift (Nshift[RS-1:0]) amount (Line 35),

and then perform dynamic left shifting of Add_M by Nshift

amount (Line 36). The parameterized LOD and Dynamic left

shift architecture is discussed above. Nshift amount is adjusted

in final exponent output value (Line 38).

Under the computation of final exponent (E_O) and regime

numerical value (R_O), first, the total effective large exponent

output value (LE_O) is computed by combining LRC, LR,

Movf, and Nshift. For LE_O < 0, it is negated as LE_ON. If

LE_O is negative and LSB ES bits of LE_ON is non zero,

then, E_O is computed as 2’s complement of LSB ES bits

of LE_ON, which is compensated by an increase in R_O,

else LSB ES bits of LE_ON would become E_O. For R_O,

if LE_O is positive (which will produce sequence of 1 with

terminating 0 for regime bits) or LE_O is negative along with

LSB ES bits of LE_ON is not zero, then, R_O would be an

incremented value of LE_ON (after chopping off its LSB ES

bits for exponent). These computations follows from (Line 37-

40) and modeled as follows:

LE_O = {(LRC ? LR : −LR),LE}+Mov f −Nshi f t

LE_ON = LE_O[ES+RS] ? −LE_O : LE_O

E_O = (LE_O[ES+RS]&(|LE_ON[ES−1 : 0]))

? (1 << ES)−LE_ON[ES−1 : 0] : LE_ON[ES−1 : 0]

R_O =!LE_O[ES+RS]|(LE_O[ES+RS]&(|LE_ON[ES−1 : 0]))

? LE_ON[ES+RS−1 : ES]+1′b1 : LE_ON[ES+RS−1 : ES]

C. Stage-3: Data Composition and Post-processing

This stage processes the another design challenge of posit

components packing and it proceeds as follows:

1) Firstly, E_O and Add_M (after leaving MSB bit, the hidden
mantissa bit) are combined to form an N-1 bit data (TMP).

2) Using sign of LE_O, a N+1 bit sequence of either 00. . . 01
or 11. . . 10 (for regime bits) is created and appended at the
MSB of TMP. The sign of LE_O act as the terminating regime
bit (1 for -ve and 0 for +ve exponent), and its opposite value
sequence acts as regime sequence. Now, 2N bits TMP includes
N+1 bits regime, ES bits exponent, and N-ES-1 bits mantissa
(Line 43-44). These are constructed as below:

T MP = {

N+1 Bits Regime Sequence
︷ ︸︸ ︷

N{!LE_O[MSB]},LE_O[MSB],

Exponent − Mantissa
︷ ︸︸ ︷

E_O,Add_M[N−2 : ES]}

3) Actual composition of posit is obtained by dynamically right
shifting TMP by R_O amount and taking LSB N-1 bits as

the pack of regime bits, exponent, and mantissa. This is done
by a dynamic right shifter of word size 2N-bits and shifting
size RS-bits (Line 45), which need RS numbers of 2N-bit 2:1
MUXs. The right side shifted out bits needed to be preserved
for rounding purposes.

4) If large sign (LS) is true, shifted TMP requires being negated
(Line 46), as per the requirement of -ve posit.

5) At this stage, rounding operation is performed. Rounding
requires few logic gates for the computation of ULP (Unit
at Last Place) and an incrementor. For simplicity, we have
used round-to-zero method. Other methods can be introduced
similar to the floating point standard.

6) The LSB N-1 bits of final TMP value is then combined with
the large sign-bit (LS) to produce the final posit addition result.
It is produced while considering ZERO and Infinity check of
the input operands as discussed earlier.

All the above processing is parameterized for N and ES, and

the source code of proposed posit adder generator is provided

as open-source at [9].

IV. IMPLEMENTATION RESULTS

A single cycle implementation of proposed posit adder is

demonstrated on a Xilinx FPGA device (xc6vlx365t-3ff1759)

and on UMC 90nm ASIC platform, for a range of ES values,

and details are shown in Fig. 3. FPGA results are obtained

after place and route, while ASIC results are obtained after

synthesis. Period on FPGA platform is obtained by plac-

ing registers at the primary inputs and outputs to avoid IO

pin delay. The functional verification is done by comparing

the hardware simulation results with the Julia package for

posit [10] provided by the posit developers. It is completely

validated for 8-bit posit with varying ES value, and with over

several millions random test cases for 16 and 32-bit posit.

For a given posit word size, the area and period are mostly

similar due to a smaller difference in the hardware requirement

across ES values variation. It mostly varies for exponent

computation, which consists of few smaller adders/subtractors

(mainly related to Lines 28, 38-39 in algorithm-1). The ma-

jor components (LODs, LZD, Dynamic Left/Right Shifters,

Mantissa Add/Sub, etc) are determined by the parameter N

and RS (Log2 N). Marginally, it is also due a generic cod-

ing/implementation, which impedes any specific optimizations.

The proposed posit implementation is visualized against

single precision (SP) FP adder to visualize on where does

posit implementation stands, and also to provide a motivation

for more exploration of posit arithmetic and its usage. As

suggested by posit developer, 32 posit with ES=3 is the closest

match to the SP format. Implementation details of a 32 bit

posit (with ES=3) and SP adder is shown in Table-I. These

literature are mostly targeted on older device (Virtex-2pro),

nonetheless, it provides a reasonable picture on the position

of posit adder. All the three prime FP adder algorithms,

standard algorithm, LOP (leading one prediction) method and

two-path FP adder method are included here. The standard

method requires fewer resources but with higher delay/period,

however, the two-path method requires more resources but

with smaller delay/period. Thus, two-path method is used

in most of commercial systems including AMD, Intel, and

 100
 150
 200
 250
 300
 350
 400
 450
 500

 1 2 3 4 5 6 7 8 9 10

FPGA Area
8-bit Posit

16-bit Posit

32-bit Posit

S
lic

e
s

 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4 5 6 7 8 9 10

FPGA Period
8-bit Posit

16-bit Posit
32-bit Posit

P
e
ri
o
d
 (

n
s
)

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

ASIC Area
8-bit Posit

16-bit Posit

32-bit Posit

A
re

a
 (

u
m

2
)

(x
 1

0
3
)

 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 1 2 3 4 5 6 7 8 9 10

ASIC Period8-bit Posit

16-bit Posit

32-bit Posit

P
e
ri
o
d
 (

n
s
)

ES

Fig. 3: FPGA and ASIC Implementation details for 8-bit, 16-

bit, and 32-bit Posit Adder with varying ES

TABLE I: 32-bit Posit Adder (ES=3) vs SP FP adders

FP Adder Methods Slices Period (ns) × Latency(cycle)

Standard[13] (Normal) 551 4.0× 19

Standard[14] (Normal) 495 5.12× 13

Standard[15](Normal) 570 6.67× 10

Standard[11](Denormal) 541 27.06× 1

LOP [11](Denormal) 748 25.33× 1

Two-Path [11], [12](Denormal) 1018 21.82× 1

32 bit Posit Adder (ES=3) 401 15.353× 1

PowerPC [11], [12]. Positively, the posit implementation finds

an average place among various FP adder methods.

V. CONCLUSIONS

The Universal Number System (Unum) is an interesting

development in the number system theory with posit as a

recent development also called type-3 to Unum. This pa-

per addressed the hardware architecture generation for the

posit addition/subtraction arithmetic. It proposed a hardware

algorithmic computational flow for posit adder and modeled

its architectural, which addressed several key implementation

challenges in posit. The entire modeling is carried out in a

parameterized manner in order to facilitate others for its simple

use under desired parameters. The entire modeling is made

open-source. The implementation is demonstrated on FPGA

and ASIC platforms, and functionality is exhaustively vali-

dated against software. Its hardware implementation metrics

are on par with SP FP adder architectures.

VI. ACKNOWLEDGMENTS

This work is party supported by the Research Grants Coun-

cil of Hong Kong (Project ECS 720012E), and the Croucher

Innovation Award 2013.

REFERENCES

[1] Gustafson, John L., The End of Error: Unum Computing, 1st ed.
Chapman and Hall/CRC Press, 2015.

[2] J. Gustafson, “A radical approach to computation with real numbers,”
Supercomputing Frontiers and Innovations, vol. 3, no. 2, 2016. [Online].
Available: http://superfri.org/superfri/article/view/94

[3] Gustafson, John L. and Yonemoto, Isaac. (2017) Beating Floating
Point at its Own Game: Posit Arithmetic. [Online]. Available:
http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

[4] W. Tichy, “The end of (numeric) error: An interview with john l.
gustafson,” Ubiquity, vol. 2016, no. April, pp. 1:1–1:14, Apr. 2016.
[Online]. Available: http://doi.acm.org/10.1145/2913029

[5] Rich Brueckner. (2015) Slidecast: John Gustafson
Explains Energy Efficient Unum Computing. in-
side HPC. [Online]. Available: https://insidehpc.com/2015/03/
slidecast-john-gustafson-explains-energy-efficient-unum-computing/

[6] W. Tichy, “Unums 2.0: An interview with john l. gustafson,” Ubiquity,
vol. 2016, no. September, pp. 1:1–1:16, Oct. 2016. [Online]. Available:
http://doi.acm.org/10.1145/3001758

[7] John L. Gustafson. (Feb 01, 2017) Beyond Float-
ing Point: Next-Generation Computer Arithmetic. Stan-
ford EE Computer Systems Colloquium. [Online]. Avail-
able: http://web.stanford.edu/class/ee380/Abstracts/170201.html,https:
//www.youtube.com/watch?v=aP0Y1uAA-2Y&feature=youtu.be

[8] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp.
1–70, Aug 2008.

[9] Manish Kumar Jaiswal. (2017) Posit Adder HDL Arithmetic. [On-
line]. Available: https://github.com/manish-kj/Posit-HDL-Arithmetic/
tree/master/Posit-Adder

[10] Yonemoto, Isaac. (2017) Sigmoid Numbers for Julia. [Online].
Available: https://github.com/interplanetary-robot/SigmoidNumbers

[11] A. Malik, D. Chen, Y. Choi, M. H. Lee, and S. B. Ko, “Design
tradeoff analysis of floating-point adders in fpgas,” Canadian Journal

of Electrical and Computer Engineering, vol. 33, no. 3/4, pp. 169–175,
Summer 2008.

[12] P. M. Seidel and G. Even, “Delay-optimized implementation of ieee
floating-point addition,” IEEE Transactions on Computers, vol. 53, no. 2,
pp. 97–113, Feb 2004.

[13] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna, “Analysis of high-
performance floating-point arithmetic on FPGAs,” in Proceedings of

18th International Parallel and Distributed Processing Symposium.
IEEE, 2004, pp. 149–156.

[14] K. Underwood, “FPGAs vs. CPUs: trends in peak floating-point per-
formance,” in Proceedings of the 2004 ACM/SIGDA 12th international

symposium on Field programmable gate arrays, ser. FPGA ’04. New
York, NY, USA: ACM, 2004, pp. 171–180.

[15] P. Diniz and G. Govindu, “Design of a field-programmable dual-
precision floating-point arithmetic unit,” in Field Programmable Logic

and Applications, 2006. FPL ’06. International Conference on, Aug
2006, pp. 1–4.

