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Abstract

This paper proposes architectures for dual-mode and tri-mode dynamically con-
figurable multiplier for quadruple precision arithmetic. The proposed dual-mode
QPdDP multiplier architectures can either compute on a pair of quadruple pre-
cision (QP) operands or provide SIMD support for two-parallel (dual) sets of
double precision (DP) operands. The proposed tri-mode QPdDPqSP multiplier
architectures are aimed to include the four-parallel (quad) single precision (SP)
along with dual-DP and a QP operand processing. For the underlying largest
sub-component, the mantissa multiplier, two methods are analyzed to design the
dual-mode/tri-mode architectures. One is based on the Karatsuba method, and in
another a dual-mode/tri-mode Radix-4 Modified Booth (MB) multiplier is pro-
posed. The proposed dual-mode/tri-mode MB multiplier requires few extra 2:1
MUXs as an overhead compared to a simple MB multiplier. To support dual-
mode/tri-mode functioning other important sub-components of the FP multipli-
cation are also re-designed for multi-mode support. The proposed architectures
are synthesized using UMC 90nm ASIC technology, and are compared against
prior literature in terms of area, period, and a unified metric “Area(Gate Count)×
Period(FO4)×Latency×T hroughput(in cycles)”. The dual-mode/tri-mode FP
architectures with MB mantissa multipliers shows better timings, however, those
with Karatsuba mantissa multipliers acquires smaller area.
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1. Introduction

Many scientific and engineering applications are in demand of higher preci-
sion computation than the single precision (SP) and double precision (DP) compu-
tation [1, 2], which leads to the inclusion of quadruple precision (QP) arithmetic
in the application’s processing. Thus, the quadruple precision format becomes an
integral part of the IEEE-754 floating point standard 2008 [3].

However, the hardware implementation of quadruple precision arithmetic re-
quires a large amount of area. This can be compensated by the idea of including a
dual (two-parallel) double precision support in it, albeit with little extra resources.
Moreover, a possible inclusion of quad (four parallel) single precision support
would further make it more promising. The contemporary computing systems
(Cell-BE [4], ARM FPU [5], Nvidia GPU [6], etc) achieve high performance
requirements by incorporating vector-arrays for these arithmetic units, which in-
clude separate vector-arrays for single precision (SP) processing and double pre-
cision (DP) processing units. These separate vector-arrays need a large silicon
area. Also, these computing machines do not include any hardware support for
quadruple precision arithmetic, and the software solutions for quadruple precision
arithmetic are very slow.

In this view, this manuscript is exploring possible architectures for dual-mode
QPdDP (quadruple precision with dual (two parallel) double precision) and tri-
mode QPdDPqSP (quadruple precision with dual double precision and quad (four
parallel) single precision) arithmetic. These have two prime targets, first to pro-
vide quadruple precision arithmetic support and second is aimed towards the in-
clusion of SIMD (single instruction multiple data) processing support for double
precision and single precision arithmetic in it. These idea helps in saving a large
silicon area compared to the individual units of a quadruple precision, and mul-
tiple units of double precision and single precision arithmetic units. Currently,
this paper is focused on the architectures of QPdDP and QPdDPqSP multiplier
arithmetic architecture.

Some recent literature have addressed on multi-mode architectures [7, 8, 9]
for various arithmetic. However, literature contains a limited work on dual-mode
QPdDP multiplier architectures. The multiplier architectures available in [10,
11, 12] are iterative in nature, while [13] has presented unfolded architectures.
Few prior work also addressed fused multiply-add architectures [14, 15](unfolded
architecture), [16] (iterative architecture) with multi-mode mantissa multiplier ar-
chitectures similar to [10, 11]. Only available work on QPdDPqSP multiplier
[17] also requires a huge amount of area with poor timings. All the prior arts
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are using the rectangular/array multiplier technique for dual-mode/tri-mode man-
tissa multiplication which requires a large amount of area, and further they are
without sub-normal and exceptional handing support. Very little literature have
also focused on related adder arithmetic architectures [18, 19, 20] and divider
architecture [21].

The proposed work is an extension of our prior work [22] which has

presented a double precision FP multiplier architecture with dual single pre-

cision multiplication support. It had proposed a dual-mode double precision

Modified Radix-4 Booth mantissa (54x54) multiplier around which the com-

plete FP multiplier design has been built. However, the current manuscript

proposes dual-mode QPdDP as well as tri-mode QPdDPqSP quadruple pre-

cision multiplier architectures. Moreover, the current manuscript incorpo-

rates two methods, Radix-4 Booth method and Karatsuba method, for build-

ing dual-mode and tri-mode quadruple precision mantissa multipliers, which

provide an interesting area-speed trade-offs among them. All other essen-

tial sub-components of FP multiplier flow (dual/tri-mode: LOD, Dynamic

Left/Right Shifter, Rounding, sub-normal and exceptional handling, etc) are

also constructed for dual-mode QPdDP and tri-mode QPdDPqSP multiplier

architectures.

Prior literature have explored extensively on the rectangular/array multiplier
for multi-mode multiplier architectures. Thus, current exploration with Modified
Booth and Karatsuba methodology for multi-mode multiplier architectures will
provide a complimentary research on this subject, along with highlighting several
design trade-offs among them. Modified-Booth multiplier is a traditional mul-
tiplication method for most of the implementation due to its smaller delay and,
Karatsuba method, based on the divide-and-conquer paradigm, helps to reduce
hardware cost in large size multiplier (for example QP mantissa size), however,
with an extra delay cost [23].

The proposed QPdDP FP multiplier architectures explore the dual mode man-
tissa multiplication architecture by designing a dual mode mantissa multiplier
(a 113x113 with dual 53x53 support) using Modified Radix-4 Booth multiplier
(named as QPdDP_MB) and by using Karatsuba method [23, 24, 25] (which is
named as QPdDP_KM). Similarly, tri-mode QPdDPqSP_MB and QPdDPqSP_KM
multiplier architectures are also proposed and designed. Previously, the Karat-
suba method is explored for single mode (SP, DP, QP) FP multiplier architectures
[24, 25] and as dual-mode double precision architecture for divider and multi-
plier units [26, 27]. Here, it is here explored for the multi-mode functionality
in QPdDP_KM and QPdDPqSP_KM multiplier architecture. The idea for multi-
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mode multiplier architecture using Modified Booth technique, which can be uti-
lized for QP multiplier architecture is lacking, and this motivates us to investigate
in this direction to design QPdDP_MB and QPdDPqSP_MB architecture. The
proposed architectures are also supported with subnormal & exceptional case han-
dling and processing. They are synthesized using UMC 90nm standard cell based
ASIC library, and compared with the prior arts.

The main contribution of this work can be summarized as follows:

• Proposed a dual mode QPdDP multiplier architecture, which supports QP
with dual (two parallel) DP processing.

• Extended above architecture for a tri mode QPdDPqSP multiplier architec-
ture, which further includes support for a four parallel SIMD SP processing.

• Two methods are explored for the architectures dual/tri mode mantissa mul-
tiplication, Karatsuba method and currently proposed dual/tri mode Radix-4
Modified Booth method. All other sub-components are also redesigned for
dual/tri mode functioning.

• Proposed dual/tri mode multiplier architectures significantly out-performs
the prior arts in terms of design metrics.

This manuscript organization proceeds as follows. Section 2 discusses the
proposed dual mode QPdDP multiplier architecture and Section 3 describes the
proposed tri-mode QPdDPqSP multiplier architecture. The detail implementation
results and related comparisons with previous literature work are presented in the
section 4. Finally, the manuscript is concluded in section 5.

2. Proposed Dual-Mode QPdDP FP Multiplier Architecture

The proposed multiplier architecture follows the state-of-the-art computational
flow for single mode F.P. multiplication which supports the processing of sub-
normal and exceptional. To support the dual-mode processing, each individual
stage of the flow are re-constructed with efficient resource sharing and tuned data-
path to minimize the multiplexing circuitry. The architectures of proposed dual-
mode multipliers are designed with four pipeline stages and is shown in Fig 1.
Except the different dual-mode mantissa multiplier (KM or MB), all other compo-
nents are same in the both dual-mode architectures (QPdDP_KM and QPdDP_MB).

The input operands for the QPdDP architecture either contains a set of QP
operands or two sets of DP operands, as shown in Fig 2. Each component of the
dual-mode QPdDP multiplier architecture is discussed below in details.
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Figure 1: QPdDP F.P. Multiplier Architecture (Dotted lines refer to pipeline registers)
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Figure 2: Input / Output Register Format.
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Figure 3: QPdDP Data Extraction and Subnormal Handler.

2.1. Data Extraction and Exceptional Check-up

This unit extract the signs (_s), exponents (_e) and mantissas (_m) for QP
and both DPs from primary operands (in1, in2) based on the standard floating
point format definition. Further, it undergoes for sub-normal and exceptional case
(infinity, NaN, zero) checking, and accordingly update the mantissa and exponent
(Fig 3). As appeared in Fig. 2 that the exponent portion of QP and second DP
(DP-2) operands are overlapped as below:

QP Exponent
︷ ︸︸ ︷
xxxxxxxxxxx
︸ ︷︷ ︸

DP−2 Exponent

xxxx

Thus, the sub-normal and exceptional checks are shared among QP and sec-
ond DP (DP-2) operands due to their shared bit position. Similarly, the resource
sharing is implemented for other exceptional cases (infinity, NaN and Zero).

2.2. Dual-Mode Core Arithmetic: Sign, Exponent and Mantissa Processing

The sign computation (logical xor operation between operands sign-bit) and
exponent processing (e← e1+ e2−BIAS) is trivial in nature. Here, the expo-
nents sum computation are shared among QP and DP-2 operands to minimize the
resource utilization.

The mantissa multiplier unit cost for most of the area, and here investigated
under Karatsuba method and Modified Booth (MB) method. Prior literature on
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dual-mode mantissa multiplication architectures are based on rectangular multi-
plier technique. In rectangular multiplication technique a large multiplier block is
partitioned in to smaller multiplier blocks, which further combined using adders.
Under this for a dual-mode operation, 2 block partitioning is required which pro-
ceeds as follows. Let A and B are 2N bits operands which is partitioned in half at
N bits, then their product can be seen as

A ·B → (A2N →{AHN
,ALN
},B2N →{BHN

,BLN
})

= {AHN
·BHN

, ALN
·BLN
}+{AHN

·BLN
+ALN

·BHN
, N′b0} (1)

Thus, it requires 4 NxN blocks for complete 2Nx2N multiplier. This method is
used in prior literature in iterative manner using two 57x57 blocks to compute full
113x113 in two clock cycles and two parallel 53x53 in one clock cycle. Further,
mostly tree/array multiplication method were used for 57x57 blocks. Dual-mode
multiplier architecture based on this idea results in poor timing and throughput
metric, along with poor Area×Period×Latency×Throughput(in cycles) metric.

To improve upon prior arts, we studied two more widely used strategies, Karat-
suba Method and proposes a dual-mode Modified Booth Multiplier. Both are dis-
cussed below separately.

2.2.1. Dual-Mode Mantissa Multiplier using Karatsuba Method

Karatsuba methodology of multiplication reduces the number of multiplier
blocks using partitioning method, as discussed in (1) with two partition. Using
Karatsuba method with two partitioning, it requires only 3 blocks instead of 4
blocks. It is shown below in (2). However, it requires few extra adder/subtractor.
Thus, it helps in reducing area compare to block rectangular method.

A ·B → (A2N →{AHN
,ALN
},B2N →{BHN

,BLN
})

= {α,β}+{(AHN
+ALN

) · (BHN
+BLN

)−α−β,N′b0} (2)

where, α = AHN
·BHN

, β = ALN
·BLN

In (2), it requires two NxN and one (N+1)*(N+1) multiplier block. For the re-
quirement of implementing dual-mode 113x113 multiplier using Karatsuba method,
it requires one 56x56, one 57x57 and one 58x58 multiplier blocks. These mul-
tiplier blocks of 56x56, 57x57 and 58x58 are designed using Radix-4 modified
Booth multiplier, with Dadda reduction tree [28], followed by the Kogge-Stone [29]
final adder. Kogge-Stone adder is a parallel prefix fast adder which is used as the
final adder, however, other parallel prefix adders can also be incorporated based
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Multiplier (m2)Multiplicand (m1)
qp_m1 {3’b0,dp2_m1,4’b0,dp1_m1}

m1[112:0]

qp_m2 {3’b0,dp2_m2,4’b0,dp1_m2}

m2[112:0]

Figure 4: Dual-Mode Karatsuba Multiplier (KM) Operands Multiplexing

b1+b0 a1+a0

m00m11m10

A0

qp_mult[225:0]

a0b0b1 a1

m10_O

<<57’b0 {m11_O,m00_O}

-A0_O

<<57’b0

a0 = m1[56:0], b0 = m2[56:0], a1 = m1[112:57], b1 = m2[112:57]

57x5756x5658x58

{m11_O,m00_O} + {m10_O - A0_O, 57’b0}

dp1_mult[[105:0]dp2_mult[[105:0]

m11_O m00_O

Figure 5: Dual-Mode Karatsuba Multiplier

on area/timing requirement. A pipeline register is placed between Dadda tree and
Kogge-Stone adder to facilitate the pipelining of mantissa multiplier to achieve
the critical path of the architecture.

The input operands generation and complete architecture of dual mode 113x113
Karatsuba mantissa multiplier is shown in Fig. 4 and Fig. 5, respectively. The mul-
tiplicand and multiplier operands are generated using QP and both DPs mantissa
operands in such a way that it contains only QP operands in QP mode, and two
sets of DP operands in dual-DP mode. In QP mode of operation, the complete
unit produce the mantissa multiplication for QP, however, in dual-DP mode multi-
pliers m00 and m11 (in Fig. 5) process mantissa multiplication for DP1 and DP2,
respectively.

The above architecture is also studied with multi-level Karatsuba partitioning
(ie. further partitioning of 56x56/57x57/58x58 multiplier blocks), however, it
degrades the timing metric further.

2.2.2. Dual-Mode Radix-4 Modified Booth Mantissa Multiplier

This paper proposes an architecture for 113x113 Radix-4 Modified Booth mul-
tiplier which also supports dual (two-parallel) 53x53 multiplication. For this, as
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Multiplier (m2)Multiplicand (m1: m1_t1, m1_t2)
qp_m1 {60’b0,dp1_m1}

m1_t1[112:0]

qp_m1 {dp2_m1,60’b0}

m1_t2[112:0]

qp_m2 {dp2_m2,7’b0,dp1_m2}

m2[112:0]

Figure 6: Dual-Mode Modified Booth (MB) Multiplier Operands Multiplexing

DADDA-Tree (10-Levels)

Kogge-Stone (Final Adder)

F(m1_t1[112:0])-->

29 Partial-Products

<--F(m1_t2[112:0])

28 Partial-Products

Partial-Products Using Dual-Mode Radix-4 Modified Booth Encoding

PP-DP1

(27 PP)

PP-DP2

(27 PP) 14-Bit

qp_mult[225:0]dp2_mult[225:120] dp1_mult[105:0]

Figure 7: Dual-Mode Modified Booth (MB) Multiplier

shown in Fig. 6, two sets of multiplicand operands (m1_t1, and m1_t2), and a uni-
fied multiplier operand (m2) are generated. Based on these operands, as shown in
the architecture Fig. 7, out of total 57 partial products in 113x113 MB multiplier,
the first 29 partial products are generated using multiplicand m1_t1, which pro-
duces partial products either for QP or DP-1, and the remaining 28 partial products
are generated using the multiplicand m1_t2, which produces it for QP or DP-2.
Based on the structure of multiplier operand (m2) the MB partial product encoder
either work for QP or dual DP.

In QP mode, the Booth encoding processing (for quadruple precision) is easy
to visualize as both of m1_t1 and m1_t2 contain same operand, the quadruple
multiplicand operand, and m2 contains the quadruple multiplier operand. During
dual DP mode, Booth encoding of m2 can be seen from Fig. 8. The first 27 partial
products which are encoded using DP-1 multiplier operand process the m1_t1
multiplicand, however, last 27 partial products are encoded using DP-2 multiplier
operand which process the m1_t2 multiplicand. During DP mode, 60-bit MSB of
first 27 partial products are zero (based on the format of m1_t1), while, the LSB
60-bit of last 27 partial products are zero (based on the format of m1_t2), however,
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DP1-m2 (53-bit)DP2-m2 (53-bit)

1

2
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Figure 8: QPdDP Booth Encoding Scenario under Dual Double Precision Processing Mode

three partial products 28-30 are zero as their Booth encoding values are ‘000’. The
last partial product of DP-1 would be separated by first partial product of DP-2 by
14-bit and thus avoid any carry forward during partial product reduction and final
addition processing.

These partial product are further reduced by a 10 level Dadda tree, in which
a register layer is inserted after level-7 for pipelining. The final addition is per-
formed by Kogge-Stone adder.

The mantissa multiplication result contains either QP mantissa multiplication
result or two DP mantissa multiplication results. Compared to a contemporary
MB multiplier, the proposed dual-mode MB multiplier requires only 3, 113-bit
2:1 MUXs as a hardware overhead which are used for initial operands generation
(m1_t1, m1_t2 and m2). Here, it is worth to mention that, since mantissa operands
are always unsigned number (only positive operands) therefore the above archi-
tecture does not face the issue of sign extension (which is required for negative
operands multiplication). In fact, this underlying observation only helped us to de-
sign the multi-mode Booth multiplier architecture (for QPdDP and QPdDPqSP)
just by arranging its input operands combinations using few extra multiplexers
while keeping rest of the architecture similar to contemporary Booth multiplier.

All the above processing, except a portion of mantissa multiplication (KM or
MB) are part of first pipeline stage of the architecture. The second stage

of the architecture includes part of mantissa multiplier (as discussed above for
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both cases), and the generation of LOD_in, the input for Leading-One-Detector.

2.3. Sub-Normal Processing

The third stage of architecture mainly includes the components related to
the sub-normal processing, as shown in Algorithm-1. It includes Leading-One-
Detector (LOD), Left-Shift-update, part of Dynamic-Left-Shifter, Right-Shift-Amount
computation, and Dynamic-Right-Shifter.

Algorithm 1 Sub-Normal Processing
1: SUB-NORMAL Processing
2: Right-Shift Amount:
3: Check if E is negative? (For Right Shifting)

4: Right_Shift← BIAS - (E1 + E2) + (Mult_M[MSB]&|E)
5: Left-Shift Amount:
6: Left_Shift← Leading-One-Detection (LOD) of M
7: Left_Shift (Update)← Check if less than or equal to E?
8: Dynamic Right Shifting and Dynamic Left Shifting:
9: Mult_M←Mult_M >> Right_Shift

10: Mult_M←Mult_M << Left_Shift

Leading-One-Detector is required to compute the amount of left-shift for man-
tissa multiplication result in case the input operand is sub-normal, and the re-
sult can be normalized. A dual-mode 128-bit LOD with hierarchical modeling is
shown in Fig 9. It also shown the generation of an unified input for LOD, LOD_in,
which contains 128-bit mantissa multiplication results either for QP or for both
DPs. LOD_2:1 serves as a basic building block for LOD design, and combination
of its two units forms a LOD_4:2. Likewise, two LOD_4:2 forms a LOD_8:3, and
similarly up to LOD_64:6 and then LOD_128:7 is built. The dual-mode LOD can
process either a 128-bit input or two 64-bit inputs and produce corresponding left-
shift amounts respectively. Compared to a single mode LOD, it requires a MUX
for generating LOD_in as an hardware overhead. The Right-Shift-Amount pro-
cessing and Left-Shift update processing are accomplished using trivial methods
as shown in Algorithm-1.

Dynamic (left/right) shifter is designed using two parallel set of barrel shifter.
The architecture for Dual-Mode Dynamic Left Shifter is shown in Fig 10, which
can process either a 226-bit input or two parallel 113-bit input operands. It con-
tains 7 level of shifting units, the very first is a single mode shifter (shift by 64-bit)
used only for QP mode, and next 6 stages are dual-mode shifter which works ei-
ther for shifting a 226-bit data or for shifting two-parallel 113-bit data. In the
dual-mode stage architecture, two top MUXs are used to process two parallel
113-bit data for dynamic left shifting, which further can combined with the help
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Figure 9: QPdDP Dual Mode Leading-One-Detector.

of bottom MUX to produce the dynamic left shifting for a 226-bit data (as a com-
bined two 113-bit inputs). A pipeline register is inserted after 3 shifting stage in
left shifter to meet the timings. A unified 226-bit input for dynamic left shifter is
generated by combining the mantissa multiplication result of QP and both DP’s
as follows:

Le f t_Shi f t_in[225 : 0] = qp_d p ? qp_mult[225 : 0]

: {d p1_mult[105 : 0],7′b0,d p1_mult[105 : 0],7′b0} (3)

Dynamic right shifting of mantissa multiplication result is required when in-
put exponents sum is less-than-equal-to BIAS, and it produces a sub-normal re-
sult. Similar to dual-mode Dynamic Left Shifter, a 128-bit dual-mode Dynamic
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Dual-Mode Stage-6 (with x=0)

DP-1 L-ShiftDP-2 L-Shift

Figure 10: QPdDP Dual Mode Dynamic Left Shifter.

Right Shifter is also designed (its close details can be visualized from portion of
tri-mode dynamic right shifter architecture discussed in QPdDPqSP architecture
section). A unified 128-bit input for dual-mode dynamic right shifter is generated
as follows:

Right_Shi f t_in[127 : 0] = qp_d p ? qp_mult[225 : 98]

: {d p1_mult[105 : 42],d p1_mult[105 : 42]} (4)

The fourth stage of architecture includes the 4 shifting stages of Dual-mode
Dynamic-Left-Shifter unit, rounding, normalization, exponent updates and final
processing. The shifted-mantissa and normalization unit takes the left shifted data
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11-bit 52-bit

112-bit

11-bit 52-bit

23-bit 23-bit23-bit23-bit8-bit 8-bit 8-bit 8-bit

QP[127:96]/DP2[63:32]/SP4 QP[95:64]/DP2[31:0]/SP3 QP[63:32]/DP1[63:32]/SP2 QP[31:0]/DP1[31:0]/SP1

Figure 11: QPdDPqSP: Input / Output Register Format.

and right shifted data, and decides which one to forward ahead with normalization
(1-bit right shifting in case of mantissa overflow). It also generates the unified
shifted and normalized mantissa which consists either of QP data or both DPs
data (with required shifting and normalization).

2.4. Rounding, Normalization, and Finalizing Output

Rounding includes ULP (unit at last place) generation and its addition to man-
tissa result. Round-to-nearest components are implemented separately, for each
QP and DPs, for ULP computations, however, and its addition with mantissa is
shared by using two blocks of adders with controlled carry forward. The ULP
generation is based on the LSB precision bit, Guard bit, Round bit and Sticky bit.

The Exponent Update unit update exponents for mantissa underflow or over-
flow, which is achieved by decrementing exponents by left-shift-amount or incre-
menting it by one, respectively. This processing is shared among QP and DP-2 as
their input exponents shares same space, however, done separately for DP-1.

The mantissas and exponents are finally updated for underflow, overflow, sub-
normal and exceptional cases to produce the final output. These are done sep-
arately for QP and both DPs. For overflow, the exponent is set to infinity and
mantissa is set to zero. In the underflow case exponent is set to zero and mantissa
takes its related computed value. The computed signs, exponents and mantissas
of QP and both DPs are finally multiplexed with a 128-bit 2:1 MUX to produce
the final output, which either contains a QP output or two DPs outputs.

3. Proposed Tri-Mode QPdDPqSP FP Multiplier Architecture

This section will discuss the proposed tri-mode QPdDPqSP (quadruple preci-
sion with dual double precision and quad single precision support) FP multiplier
architecture. The flow of QPdDPqSP architecture is similar to that of QPdDP (in
Fig. 1, which is also designed with four pipeline stages at similar computational
stages. More details on the individual component design of this architecture are
discussed below.
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The unified QPdDPqSP input/output register format is shown in Fig. 11, which
either contains a QP operand or two parallel DP operands or four parallel SP
operands.

The very first component of the architecture, QPdDPqSP Data Extraction
and Subnormal Handler, is shown in Fig. 12. It extracts the sign, exponent and
mantissa portion for each format of floating point operands, ie. one pair of QP
operands, two pairs of DP operands and four pairs of SP operands. As appears
from Fig. 11, the exponents positions of QP, DP-2 and SP-4, as well as that of
DP-1 and SP-2 are shared (similar to QPdDP, where QP and DP-2 exponents are
sharing positions). Thus, as shown in Fig. 12, it helps in sharing the hardware
resources required for subnormal and exceptional checks for these operands sets,
whereas for others (SP-1 and SP-3) it is done separately.

Data Extraction & SubNormal Handler

sp2_s1=in1[63],    sp2_s2=in2[63]

sp2_e1={in1[62:56],in1[55] | sp2_sn1}

sp2_e2={in2[62:56],in2[55] | sp2_sn2}

sp2_m1={~sp2_sn1,in1[54:32]}

sp2_m2={~sp2_sn2,in2[54:32]}

sp1_s1 = in1[31],    sp1_s2 = in2[31]

sp1_e1={in1[30:24],in1[23]|sp1_sn1}

sp1_e2={in2[30:24],in2[23]|sp1_sn2}

sp1_m1={~sp1_sn1,in1[22:0]}

sp1_m2={~sp1_sn2,in2[22:0]}

sp3_s1 = in1[95],    sp3_s2 = in2[95]

sp3_e1={in1[94:88],in1[87]|sp3_sn1}

sp3_e2={in2[94:88],in2[87]|sp3_sn2}

sp3_m1={~sp3_sn1,in1[86:64]}

sp3_m2={~sp3_sn2,in2[86:64]}

sp4_s1 = in1[127],    sp4_s2 = in2[127]

sp4_e1={in1[126:120],in1[119] | sp4_sn1}

sp4_e2={in2[126:120],in2[119] | sp4_sn2}

sp4_m1={~sp4_sn1,in1[118:96]}

sp4_m2={~sp4_sn2,in2[118:96]}

dp1_s1=in1[63],    dp1_s2=in2[63]

dp1_e1={in1[62:53],in1[52]|dp1_sn1}

dp1_e2={in2[62:53],in2[52]|dp1_sn2}

dp1_m1={~dp1_sn1,in1[51:0]}

dp1_m2={~dp1_sn2,in2[51:0]}

qp_s1=in[127],     qp_s2=in2[127]

qp_e1={in1[126:113],in1[112] | qp_sn1}

qp_e2={in2[126:113],in2[112] | qp_sn2}

qp_m1={~qp_sn1,in1[111:0]}

qp_m2={~qp_sn2,in2[111:0]}

dp2_s1=in1[127],    dp2_s2=in2[127]

dp2_e1={in1[126:115],in1[116]|dp2_sn1}

dp2_e2={in2[126:115],in2[116]|dp2_sn2}

dp2_m1={~dp2_sn1,in1[115:64]}

dp2_m2={~dp2_sn2,in2[115:64]}

QP:

SP4:SP3:SP1: SP2:

DP1: DP2:

[7:0] [7:0]

*_sn2*_sn1

**_sn

SP Sub-Norm

in1[30:23] in2[30:23]

sp1_sn2sp1_sn1
sp1_sn

SP Sub-Norm
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SP Sub-Norm
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SP Sub-Norm
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DP Sub-Norm
sp4_sn2sp4_sn1

qp_sn

in1[115:112] in2[115:112]

qp_sn2qp_sn1

QP Sub-Norm
dp2_sn2dp2_sn1

*_sn2*_sn1

[x:0] [x:0]

**_sn1 **_sn2

***_sn

DP/QP Sub-Norm

Figure 12: QPdDPqSP Data Extraction and Subnormal Handler.

The signs and exponents computations are simple and implemented as con-
temporary method while sharing resources for QP,DP-2 & DP-4, and DP-1 &
SP-2 exponents processing.

The mantissa multiplier for QPdDPqSP is also designed using both, the Karat-
suba method and newly designed tri-mode Radix-4 Modified Booth multiplier ar-
chitecture.

3.0.1. Tri-Mode Karatsuba Mantissa Multiplier

The architecture of tri-mode 113x113 mantissa multiplier using Karatsuba
method is shown in Fig. 13. This architecture is based on the recursive use of
two-partition Karatsuba method. First, the unified mantissa multiplicand and mul-
tiplier operands are generated which either consists of QP or dual DP or quad SP
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m1[112:0]
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Multiplier (m2) Multiplexing
qp_m2

{3’b0,dp2_m2,4’b0,dp1_m2}

m2[112:0]

{3’b0,sp4_m2,5’b0,sp3_m2,4’b0,sp2_m2,5’b0,sp1_m2}

Figure 13: Tri-Mode QPdDPqSP Karatsuba Mantissa Multiplier.

operands, as shown in Fig. 13. This unification is segmented at 29th, 57th, 96th
bit position for SP’s operands while at 57th bit position for DP’s operands.

Their implementation follows by partitioning them at 57th bit position as fol-
lows:

m1[112 : 0]←{m1[112 : 57],m1[56 : 0]}← {X1,X0}

m2[112 : 0]←{m2[112 : 57],m2[56 : 0]}← {Y1,Y0} (5)

Thus, similar to eq(2), their multiplication using two partition Karatsuba method
would be,

m1 ·m2←{Y1 ·X1,Y0 ·X0}+{(Y1 +Y0) · (X1 +X0)−Y1 ·X1−Y0 ·X0,57′b0} (6)

Thus, it requires two 57x57 (for Y1 ·X1 and Y0 ·X0) and one 58x58 (for (Y1 +
Y0) · (X1 +X0)) multipliers. These multipliers are further partitioned at 29th bit
position and implemented using two partitioning Karatsuba method.

In Fig. 13, the multiplier block M00 implements the 57x57 Y0 ·X0 (similar to
Fig. [5] for QPdDP multiplier) and produces SP-1 and SP-2 mantissa multipli-
cation results along with (by further combining them) producing DP-1 mantissa
multiplication result. Similarly, the multiplier block M11 produces results for SP-
3, SP-4 and DP-2 mantissa multiplication. The multiplier block M10 implements
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Figure 14: Tri-Mode QPdDPqSP Radix-4 Modified Booth Mantissa Multiplier.
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Figure 15: QPdDPqSP Booth Encoding Scenario under Quad Single Precision Processing Mode.

58x58 (Y1 +Y0) · (X1 +X0) multiplier using two partition method, and by com-
bining DP-1 and DP-2 results produces QP mantissa multiplication result. In this
architecture, the basic multiplier units of M00, M11 and M10, ie. 28x28, 29x29
and 30x30 multipliers are designed using Radix-4 MB partial product generation
with 7 Dadda layers reduction tree and a final Kogge-Stone adder. A pipeline
register is placed before the Kogge-Stone adder as the first pipelining stage of the
QPdDPqSP architecture.

3.0.2. Tri-Mode Radix-4 Modified Booth Mantissa Multiplier

The proposed architecture of tri-mode Radix-4 MB multiplier is shown in
Fig. 14. Here, a four sets of unified multiplicand (m1_t1, m1_t2, m1_t3 and
m1_t4) and a unified multiplier (m2) operands are initially generated. The m1_t1
and m1_t2 are similar to m1_t1 of QPdDP MB architecture which contains either
QP or DP-1 multiplicand operands, however, here, they individually also contains
SP-1 and SP-2 multiplicand operands, respectively. Similarly, m1_t3 and m1_t4
contains SP-3 and SP-4 multiplicand operand, respectively, or contains QP or DP-
2 multiplicand operands. The unified multiplier operand m2 either contains QP
multiplier operand, or both DP multiplier operands separated by 8-bit zeros, or it
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contains four SP multiplier operands each separated by 6-bit zeros.
The processing under QP and dual-DP mode is similar to the QPdDP architec-

ture. Further, each SP contains 13 partial products, which are vertically separated
by 2 partial products (both of them are zeros) and horizontally separated by 12-bit,
which enables smooth processing of partial product reduction and final addition,
without corrupting any neighborhood data. The Radix-4 Booth encoding sce-
nario of multiplier operand during quad SP mode is shown in Fig. 15. A 10 layer
Dadda tree is used for the reduction of partial products which finally added by a
Kogge-Stone adder. A register level is inserted after 7th layer of Dadda tree for
the pipelining purpose. This proposed tri-mode Radix-4 Modified Booth architec-
ture is able to perform dynamically on either of a QP operand pair or a dual DP
operands pairs or a quad SP operands pair. Compare to a traditional MB multi-
plier, extra MUXs used for the generation of multiplier and multiplicand operands
sets act as a hardware overhead in proposed tri-mode MB architecture.

All the processing till the pipelining registers in tri-mode KM/MB mantissa
multiplier are part of first stage of QPdDPqSP architecture. Remaining portion of
mantissa multiplier architecture are part of second stage along with the generation
of LOD_in, the input for Leading-One-Detector (Fig. 16. The 128-bit LOD_in
contains MSB mantissa multiplication results either of QP or dual DP or quad SP,
in chunks of 32-bit.

The third stage of architecture deals with the post subnormal processing based
on the Algorithm-1, and contains Tri-mode Leading-One-Detector (LOD), tri-
mode dynamic right shifter, right shift amount computations and part (4 stages) of
dynamic left shifter.

The architecture of QPdDPqSP LOD is shown in Fig. 16. It is designed using
hierarchical modeling, similar to that of QPdDP. Here, data partitioning is done
at 32-bit level, to take out SP’s left-shifting amount along with further taking out
DP’s and QP left-shifting amounts.

The architecture of 128-bit tri-mode dynamic right shifter is shown in Fig. 17.
It contains 7 stages, first one is a single mode (only for QP) stage, the second
one is a dual-mode stage (similar to a dual mode stage of QPdDP), and remain-
ing five are stages with tri-mode functionality. The functioning of dual mode is
similar to QPdDP. The tri-mode stages are designed by further partitioning the
QPdDP dual-mode stage mid-way. Thus, in tri-mode stage architecture, the top-
level MUXs are functioning on 32-bit segments for each SP, which further (condi-
tionally) combined to produce shifting for both DP’s and finally by (conditionally)
combining them QP shifting result can be obtained. The conditional combining
are dependent on the mode of processing.
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Figure 16: QPdDPqSP Tri-Mode Leading-One-Detector

Similarly, a 228-bit tri-mode dynamic left shifter is designed with 7 stages,
in which first four stages are part of third pipeline stage of the architecture, and
remaining 3 are part of fourth pipeline stage. It can either process a 228-bit input
for QP, or two 114-bit input each for both DPs or four 57-bit inputs for each SPs.
Instead of 226-bit, it is taken as 228-bit to partition it well by 4 units to handle
SP’s accommodation. The architectural combination of QPdDP dual-mode left
shifter and QPdDPqSP tri-mode right shifter can easily complement each other
to design the QPdDP dual-mode right shifter and QPdDPqSP tri-mode left shifter
architectures.

The unified inputs for tri-mode left shifter and tri-mode right shifter are gen-
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Figure 17: QPdDPqSP Tri-Mode Dynamic Right Shifter

erated as follows:

Le f t_Shi f t_in = QP ? {qp_mult,2′b0}

: (DP ? {d p2_mult,8′b0,d p1_mult,8′b0}

: {sp4_mult,9′b0,sp3_mult,9′b0,

sp2_mult,9′b0,sp1_mult,9′b0}) (7)
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Right_Shi f t_in = QP ? qp_mult[225 : 98]

: (DP? {d p2_mult[105 : 42],d p1_mult[105 : 42]}

: {sp4_mult[47 : 16],sp3_mult[47 : 16],

sp2_mult[47 : 16],sp1_mult[47 : 16]}) (8)

After subnormal processing, the rounding ULP is generated separately for
each SP’s, DP’s and QP, which are added to the mantissa using four blocks of
adders with controlled carry forward, in order to share the resources among QP,
two DPs’ and four SPs’ processing. Later, the exponents are updated for pos-
sible mantissa underflow or overflow, and related processing is shared among
QP/DPs/SPs similar to the exponent computation in first stage. All the expo-
nents and mantissas are further updated individually for overflow, underflow and
exceptional cases and produces final result using a 128-bit 3:1 MUX, based on the
processing mode.

4. Implementation Results and Comparisons

The proposed QPdDP and QPdDPqSP FP multiplier architectures are synthe-
sized using UMC 90nm standard-cell ASIC library and implementation details are
presented in Table 1. For the area and timing overhead measurement of proposed
dual-mode architecture compared to a single-mode QP FP multiplier, a single-
mode QP FP multiplier is also designed and synthesized using similar computa-
tion flow with Radix-4 MB method used for mantissa multiplication. The archi-
tecture with Karatsuba method is named as QPdDP_KM / QPdDPqSP_KM and
that with MB method is named as QPdDP_MB / QPdDPqSP_MB. These archi-
tectures are synthesized for the best possible achievable timing constraint. These
architectures are designed with latency of 4 clock cycles and have throughput of
1 clock cycles.

All the above multiplier architectures are functionally verified against Syn-
opsys Design Compiler floating point multiplier IP (intellectual property) using
extensive random test cases for each mode, with all possible combinations of
input operands, like normal-normal, normal-subnormal, subnormal-normal, and
subnormal-subnormal, with exceptional cases.

Compared to the single mode QP multiplier, the proposed QPdDP_MB multi-
plier needs 9.58% more area and 4.54% more period, with minor power overhead.
Whereas, as expected, QPdDP_KM multiplier requires 1.2% less area and 40%
more period than single mode QP multiplier. The very nature of Karatsuba method
is to reduce area by reducing the required number of multiplier blocks, however,
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Table 1: Implementation Details for Proposed Architecture

QP QPdDP_MB QPdDP_KM QPdDPqSP_MB QPdDPqSP_KM
(MB Method) (Dual MB Method) (Karatsuba Method) (Dual MB Method) (Karatsuba Method)

Latency 4 4 4 4 4
Area(µm2) 428554 469641 423397 508857 424609
Area(gates) 142851 156547 141132 169619 141536
Period(ns) 1.10 1.15 1.54 1.20 2.10
Period(FO4) 24.44 25.55 34.22 26.67 46.67
Power(mw) 193.05 201.47 161.01 197.5 112.44

Table 2: Comparison of Multiplier Architectures

QPdDP Multiplier QPdDPqSP Multiplier
[10] [11] Proposed (With Sub-Normal) [17] Proposed (With Sub-Normal)

(Normal) (Normal) QPdDP_MB QPdDP_KM (Normal) QPdDPqSP_MB QPdDPqSP_KM
Latency (QP/dDP/qSP) 3/2 3/2 4/4 4/4 3/3/2 4/4/4 4/4/4
Throughput1 (QP/dDP/qSP) 2/1 2/1 1/1 1/1 2/1/1 1/1/1 1/1/1
Gate Count2 146566 144178 156547 141132 832133∗ 169619 141536
Area @ 90nm 2496400∗∗ 508857 424609
Period (FO4)3 48.9 49.12 25.5 34.22 88 26.67 46.67
Area × Period × Latency
× Throughput (106) # 43.0 42.49 15.97 19.32 18.09 26.42

1 in clock-cycle, 2Based on minimum size inverter, 31 FO4 (ns) ≈ ( Tech. in µm
2 )

∗ Based on computed scaled area @ 90nm, ∗∗ Scaled area in µm2 @ 90nm = (Area @ 45nm) * (90/45)2

#Gate Count × Period (FO4) × Latency × Throughput (in clock-cycle)

at cost of some extra delay due to extra-layers of adder/subtractor. Similarly, the
proposed tri-mode QPdDPqSP_MB multiplier requires 18.7% more area and 9%
more period than a single mode QP multiplier, while the QPdDPqSP_KM re-
quires smaller area and more period than QP only multiplier. Thus, QPdDP_MB /
QPdDPqSP_MB architectures are better for timing metric, whereas, QPdDP_KM
/ QPdDPqSP_KM are doing better in area saving. The power overhead for multi-
mode architectures are obviously due to the large area and switching activities
involved in them. The power of tri-mode architectures are litter lower than their
dual-mode counterparts due to their high time-periods (low frequency).

Furthermore, both QPdDP multipliers also provide computational support for
SIMD dual DP multiplication, and thus saves on 2 DP FP multiplier units. Like-
wise, QPdDPqSP multipliers further include SIMD support for four SP multiplier
computations, and thus saves on 2 DPs’ and 4 SPs’ multiplier units.

A comparison with prior work on QPdDP multiplier available in literature is
presented in Table 2. All the previous work on QPdDP multiplier [10, 11] consist
of only an iterative mantissa multiplier and rounding circuitry. They have poor
throughput, and are without sub-normal and exceptional handling support. Com-
parison is presented in terms of technological independent parameters like, area in
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terms of Gate-Counts and period in terms of FO4 (Fan-Out-of-4) delay number.
A unified metric “Area X Period X Latency X Throughput (in clock cycles)” is
also used for comparison, which should be smaller for a better architecture.

The architecture presented in [10, 11] are almost similar, and have used two
57x57 integer array multipliers in iterative manner to accomplish one 114x114
(for QP mantissa) multiplication in 2 cycles or two 57x57 (for two DPs mantissa)
multiplications in one cycle. Thus, their throughput is 2 cycles for QP multiplier
and 1 cycles for DPs multiplication. Despite the proposed work implements a
complete multiplier for better throughput, it requires only a little more area for
QPdDP_MB than prior arts, however, QPdDP_KM’s area metric is even better
than earlier work. This is the benefit of using Modified Booth method over ar-
ray/tree multiplication method, and it gives even better when used with Karatsuba
methodology. Moreover, both proposed architectures have better throughput and
period along with the support of sub-normal computations and exceptional case
handling. Also, the fully unfolded version of [10, 11] architectures would require
almost double of currently reported area. Thus, the unified metric of “Area X
Period X Latency X Throughput(cycle)” of proposed QPdDP multipliers shows a
significant improvement (more than 3 times) over [10, 11] architectures.

Table 2 also includes the comparison of QPdDPqSP with only available liter-
ature on it [17]. [17] has presented an architecture for QPdDPqSP FP multiplier
which consists of an iterative mantissa multiplier with rounding circuitry. It has
also used rectangular multiplier concept for mantissa multiplier, and has incor-
porated four 58x29 multipliers which can perform QP mantissa multiplication in
2 clock cycles, can process two DPs or four SPs in one clock cycle. The la-
tency is 3/2/2 clock cycles for QP/dDP/qSP with throughput of 2/1/1 cycle for
QP/dDP/qSP multiplications. With an implementation on 45nm technology, it re-
quires a huge amount of area 624100 µm2 with 505 MHz frequency (1.98ns or
88 FO4 period delay). The area requirement and timing metric of [17] lags far
behind the proposed tri-mode QPdDPqSP FP multiplier architecture.

Among others, the architecture in [12] has used a 76x27 bit rectangular mul-
tiplier in iterative manner to process either of a DP/DEP, or two SP multiplication
(however, 2 SP multiplication is carried out with a common multiplier operand).
Further, [13] has also used only array/tree rectangular multiplier and rounding
circuit (similar to [10, 11]) for a double precision implementation. Few other
literature [14, 16, 15] have also targeted for multi-mode FMA architectures with
multi-mode mantissa multiplier architecture similar to [10, 11], and thus they
also face similar issue of large area and delay. Also, all the previous works do
not include support for multi-mode sub-normal and exceptional handling, which
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requires additional area and delay cost.
The contemporary multiplier architectures prefer to incorporate Modified Booth

based multiplier due to its better area and timing metrics, and thus, is a part of
present proposals in dual-mode/tri-mode fashion, instead of array/tree multiplier
which needs large area with poor timings, as can be seen from above discussion.
Further, by using Karatsuba method some more area reduction can be achieved,
albeit, with some sacrifice on timings.

5. Conclusions

Two configurable architectures QPdDP and QPdDPqSP for quadruple preci-
sion with SIMD support for lower precision (DP/SP) computation are presented in
this paper. QPdDP supports QP with dual (two-parallel SIMD) double precision,
and QPdDPqSP supports QP with SIMD dual DP and SIMD quad SP floating
point multiplications. Both are further explored with two kinds of mantissa mul-
tipliers technique, Karatsuba Method (KM) and currently proposed dual/tri mode
Radix-4 Modified Booth (MB) multiplier. All the other key components of pro-
cessing flow are designed for the efficient dual/tri mode processing. Architectures
with dual/tri mode MB mantissa multipliers are better in terms of timing metric,
whereas, that with KM method outperforms in terms of area metric. The pro-
posed dual-mode/tri-mode quadruple precision multiplier architectures improve
significantly on the area, timing and throughput compared to previous literature.
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