
MSD: Mixing Signed Digit Representations for
Hardware-efficient DNN Acceleration on FPGA

with Heterogeneous Resources
Jiajun Wu∗, Jiajun Zhou∗, Yizhao Gao, Yuhao Ding, Ngai Wong, Hayden Kwok-Hay So

Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong
{jjwu, jjzhou, yzgao, yhding, nwong, hso}@eee.hku.hk

Abstract—By quantizing weights with different precision for
different parts of a network, mixed-precision quantization
promises to reduce the hardware cost and improve the speed of
deep neural network (DNN) accelerators that typically operate
with a fixed quantization scheme. However, the additional control
needed, and the decreased hardware efficiency arising from
multi-precision operations have made mixed-precision quantiza-
tion schemes challenging to deploy in practice. In this paper, a
practical mixed-precision quantization framework called MSD
that leverages the heterogeneous computing resources on FPGA
to perform bit-serial and bit-parallel operations simultaneously
is presented. MSD combines the use of a custom restricted signed
digit (RSD) representation, which utilizes a limited number of
effectual bits, and the conventional 2’s complement representa-
tion to quantize DNN weights. Depending on the availability of
fine-grained and coarse-grained resources, MSD encodes a subset
of weights with RSD to allow highly efficient bit-serial multiply-
accumulate implementation using LUT resources. Furthermore,
the number of effectual bits used in RSD is optimized to match
the bit-serial hardware latency to the bit-parallel operation on
the coarse-grained resources to ensure the highest run-time
utilization of all on-chip resources. Experiments show that MSD
achieved a 1.36× speedup on the ResNet-18 model over the
state-of-the-art, and a remarkable 4.91% higher accuracy on
MobileNet-V2.

I. INTRODUCTION

Modern FPGAs are becoming increasingly heterogeneous
with coarse-grained word-level processing resources running
alongside traditional fine-grained bit-level configurable logic.
While coarse-grained programmable resources such as the
digital signal processing (DSP) blocks are very efficient in
processing data encoded with standard 2’s complement rep-
resentation at relatively wide bitwidth (viz. 8 to 16 bits),
it is the flexibility of the fine-grained reconfigurable logic
resources (i.e., LUTs) that makes them uniquely promising
to accelerate deeply quantized DNN that leverage 2 to 4 bits
for custom encoding of weights. Leveraging the two types of
resources available on an FPGA, researchers have explored
using a mix of multiplication and accumulation (MAC) units
that are optimized for different bitwidth to perform mixed-
precision DNN inference [1]–[4]. Through extensive design
space exploration (DSE) and dataflow scheduling, the DNN
workloads can then be mapped onto both types of resources
to maximize the accelerator’s theoretical peak performance.

*Equal contribution.

The challenge of this approach, however, is twofold. First,
it remains a significant challenge to maintain good accuracy
with deeply quantized DNN, even when combined with ad-
vanced mixed-precision operations running on both types of
resources [3]–[5]. For instance, the accuracy of MobileNet-V2
dropped from 71.88% to 66.25% when 3 to 8 bits mixed-
precision quantization was employed as reported in [3]. Sec-
ond, unlike software that can arbitrarily adjust the employed
bitwidth as the application requirement changes, hardware
compute units must be statically built with resources provi-
sioned for all possible data types that they need to support
during run time. As a result, the purported benefits of utilizing
mixed-precision operation can easily be outweighed by the
overhead of supporting them in hardware, especially in ultra-
low bitwidth range of 1 to 4 bits.

One solution to support variable bitwidth operations nat-
urally during run time is to employ a bit-serial computing
architecture [3], [6]–[9]. Although many early works have
demonstrated the hardware advantages of utilizing bit-serial
computation for mixed-precision DNN inference on FPGAs,
they have yet to exploit the bit-level sparsity that is needed to
fully unleash the benefits of performing bit-serial computations
at ultra-low bitwidth. Specifically, one can speed up the bit-
serial multiplier by skipping the ineffectual zeros bits in the
input. However, leveraging bit-level sparsity can also be chal-
lenging. If the input data has an arbitrary number of effectual
bits (EB), it may also suffer from an unbalanced load of PEs as
the one with the most EBs then dominates the performance.
Works like PRA [10], Bit-Tactical [7], and Bitlet [8] have
proposed sophisticated hardware dynamic scheduler or bit-
interleaved PEs architecture to address this issue but they
come with non-negligible overhead in control logic. On the
other hand, BitCluster [11] and BitPruner [12] resort to hard-
ware/software co-design by constraining identical effectual
bits (EB) of weights within a model/layer to achieve load
balance. Nevertheless, similar to the low-bitwidth quantization
approaches, it can also downgrade a model’s representation
capability by limiting a small number of EB based on common
representation (e.g., 2’s complement). We still need to explore
a more efficient representation for MAC deployed on LUTs so
that there are different optimization methods for fine-grained
resources (LUTs) and coarse-grained resources (DSPs).

In this paper, we introduce MSD, which utilizes a mix of

two signed digit representations for hardware-efficient DNN
acceleration with heterogeneous resources on FPGA. A cus-
tom restricted signed digit (RSD) data representation, which
uses ternary digit set {−1, 0,+1} in the encoding scheme,
is proposed to work in conjunction with conventional 2’s
complement operations for mixed-precision inference. Based
on the RSD representation, a load-balanced bit-serial archi-
tecture that leverages bit-sparsity is implemented using fine-
grained resources (LUTs). To achieve load balance in bit-serial
computation, it also enforces the number of EB for weights
in a kernel/layer to be identical. Under the constraint of the
number of EB, RSD makes the fine-tuned weights closer to
the original values, allowing bit-serial PEs to fully exploit bit-
sparsity while having a more extensive numerical representa-
tion capability than the standard method. At the same time,
conventional 8-bit fixed operations with 2’s complement are
implemented in DSP to complement the low bitwidth RSD
operations to achieve high model accuracy and to fully exploit
the computation capability of an FPGA. Finally, to balance
the workload between DSPs and LUTs in the heterogeneous
architecture, a hardware-aware fine-tuning algorithm based on
a cycle-accurate hardware cost model is introduced. The key
contributions of this work are:

• We propose to use a mixed signed digit (MSD) scheme
for hardware-efficient DNN accelerations that can ef-
ficiently utilize the heterogeneous resources on FPGA.
It is powered by the proposed RSD representation that
supports bit-serial computation on LUTs and bit-parallel
computations on DSPs.

• We propose a fine-tuning and encoding algorithm for
the weights based on the RSD representation. The hard-
ware can exploit bit-level sparsity and achieve workload
balance by restricting the number of non-zero bits in
the weights to be identical. The RSD-quantized weights
typically cause smaller numerical errors and can be
efficiently deployed on bit-serial architecture.

• We develop a hardware/software co-design DNN acceler-
ation framework based on the proposed architecture and
weight adjustment method. The hardware-aware frame-
work receives a DNN model and automatically selects
the optimal EB configuration, scheduling, and workload
partitioning for the heterogeneous resources.

• The entire framework is publicly available. Artifacts
associated with this work is available at https://doi.org/10.
25442/hku.22182073. Latest version of the open source
code can be found at https://github.com/CASR-HKU/
MSD-FCCM23.

This paper is organized as follows. In the next section,
background on mixing bit-serial and bit-parallel operations on
FPGAs will be presented. The MSD framework including the
encoding method, hardware architecture, and a quantization
scheme will be discussed in Section III. We evaluate the
performance of MSD in Section IV and finally conclude in
Section V.

II. BACKGROUND & RELATED WORK

A. Heterogeneous Architecture in FPGA DNN Accelerators

Modern FPGAs usually have hardened arithmetic blocks
like DSPs and soft programmable logic like LUTs. Previ-
ous research has extensively used DSPs as building blocks
for DNN accelerators. In recent years, many research and
industrial efforts have also been devoted to embedding more
AI-optimized building blocks in FPGAs fabrics like Tensor
slices [13] and AI Tensor Block [14] to improve the density
of MAC units further. However, a given FPGA device comes
with a fixed number of hardened arithmetic blocks. Higher
peak performances can be achieved if soft programmable logic
can also be used efficiently in a heterogeneous fashion. Some
prior research has co-designed with a quantization scheme to
improve the efficiency of the overall heterogeneous system.
Mix and Match [1] applied different quantization schemes
on different rows of weight and proposed a sum-of-power-
2 quantization algorithm that allows simple shift-adders to be
implemented on LUTs. HAO [4] designed a hardware/software
co-search framework to find optimal mix-precision quanti-
zation configurations in an inter-layer dataflow architecture.
N3H-Core [3] integrated BISMO [15], an area-efficient bit-
serial overlay, in its LUT-based computation cores. However,
they failed to leverage the acceleration opportunities within the
sparsity of bit-serial architecture. In MSD scheme, we design
a bit-sparsity-aware framework that uses RSD representation.
Our framework is also co-optimized with quantization training
and scheduling to fully exploit the potential of heterogeneous
architecture.

B. Bit-Serial Computing with Bit-Sparsity

Bit-serial architecture has been widely used in many digital
systems designs focusing on low power and area efficiency.
One might explore serial computation on both multiplicand
and multiplier in bit-serial multiplication to perform one-bit
shift and accumulation, as shown BISMO [15]. This design
typically takes n2 cycles to compute for n bits input. Another
type of bit-serial multiplier may exploit serialization on only
one of the inputs and carry out parallel shifting and accu-
mulation on the other, like BitCluster [11]. It reduces latency
to n cycles but requires more area for parallel shifter&adder.
In general, bit-serial architecture transformed multiplication
into multiple shifting and accumulation operations, which only
happens on effectual bits (non-zero bits). Thus, one can speed
up bit-serial architecture by saving the cycles on zero bits.

Many previous works have explored using bit-serial ar-
chitecture in DNN accelerators to generate energy-efficient
designs or exploit bit-level sparsity. Strips [16] proposed a
bit-serial DNN accelerator suitable for efficient acceleration
with varying precision on different layers. PRA [10] further
extended this architecture by eliminating the ineffectual com-
putation on zero bits. However, leveraging sparsity in bit-serial
architecture can also bring the problems of an unbalanced
load of PEs as different inputs can have a different number of
effectual bits. Bitlet [8] adopted a bit-interleaved design that

https://doi.org/10.25442/hku.22182073
https://doi.org/10.25442/hku.22182073
https://github.com/CASR-HKU/MSD-FCCM23
https://github.com/CASR-HKU/MSD-FCCM23

condenses effectual bits and achieves better load balance. Bit-
Cluster [11] addressed this problem from a software/hardware
co-design point of view by constraining the number of ef-
fectual bits to be identical within a layer/network. In this
work, we extend this idea by using RSD representation that
further reduces the numerical errors while fully exploiting the
opportunities from the load-balanced bit-serial architecture.

C. Signed-Digit Representation

The signed-digit representation uses a ternary number sys-
tem with the digit set {1, 0,−1}, which is often denoted as
{1, 0, 1̄}. Among which, the Canonical Signed-Digit (CSD)
is a unique representation that minimizes the number of non-
zero digits (Hamming weight) of a number and is widely used
in low-power, high-speed DSP applications [17]–[19]. Prior
research has also explored using signed-digit representation in
DNN compression or acceleration. CAxCNN [20] used CSD to
approximate model weights and proposed a hardware acceler-
ator with area-efficient multipliers. CoNLoCNN [21] proposed
an Encoded Low-Precision Binary Signed Digit (ELP BSD)
representation as well as a non-uniform quantization method to
speed up network inference and maintain accuracy. DWP [22]
used a multi-objective shortest path problem formulation to
search for the signed-digit representation of weights that
allows maximal digit-serial parallelism. It also incorporated
other bit-condensing techniques and designed a customized
hardware accelerator. Unlike those works, MSD framework
adopts a hardware-aware quantization training method that
constrains the number of effectual bits in a kernel/layer. It
allows efficient load-balanced bit-serial to be deployed on
LUTs as a heterogeneous core.

III. METHODOLOGY

This section introduces the MSD framework in terms of
algorithm and software-hardware co-design. We first present
the proposed weight fine-tuning algorithm based on the RSD
representation under the restriction of identical EB of weights
within each layer. Efficient hardware is designed to support bit-
serial computing and heterogeneous DNN workloads by mix-
ing the RSD and standard representation. Finally, we present
a hardware-aware mixed-EB search framework to realize the
speedup-accuracy trade-off on the proposed hardware design.

A. RSD-based Weight Fine-tuning & Encoding

As discussed in Section II, we need to restrict the number
of EB in a workload of weights as the same to avoid un-
balanced issues [11]. Nevertheless, directly removing/adding
‘1’ bits based on standard 2’s complement format downgrades
the representation capability. Motivated by the signed digit
number systems, a customized RSD data representation is
proposed to keep the number precision while restricting the
number of EB. Given an original number and restricted
EB, we apply the binary search algorithm on the EB bases
S = (1, 2, 4, 8, 16, 32, 64, 128) (integer power of 2) to find the
closest base and decide whether this base is added/subtracted
to the previous bases. When the depth of the search tree

46 (int8)
= 00101110

48 = 32 + 16
= 00110000

RSD
EBL = 2

0 1 0 0

0 1 0 1

Original
Numbers

30 (int8)
= 00011110

30 = 32 - 2
= 001000!10 1 0 0 1

0 1 0 1
IDXSEL

16 (int8)
= 00010000

16 = 32 - 16
= 001!10000 1 1 0 0

0 1 0 1

RSD Encode

46 → 40
= 00101110

2’s complement
EBL = 2,

30 → 24
= 00011110

16 → 17
= 00010001

Restricting EB: Add or remove non-zero bits from LSB to MSB

Fig. 1: Weight fine-tuning and encoding scheme based on the
RSD representation. Under the same restriction of EB, RSD
representation can make the fine-tuned values closer to the
original values.

0 5 10 15 20 25 30
(a)

0

5

10

15

20

25

30

St
an

da
rd

 E
B2

 Q
ua

nt
iz

ed
 V

al
ue

0 5 10 15 20 25 30
(b)

0

5

10

15

20

25

30

RS
D

 E
B2

 Q
ua

nt
iz

ed
 V

al
ue

30 20 10 0 10 20 30
(c)

0

2

4

6

8

10

12

14

N
or

m
al

iz
ed

 F
re

qu
en

cy
 (

%
) STANDARD

FP32

30 20 10 0 10 20 30
(d)

0

2

4

6

8

10

N
or

m
al

iz
ed

 F
re

qu
en

cy
 (

%
) RSD

FP32

Fig. 2: Comparing numerical properties of standard 2’s com-
plement and RSD representation with EBL = 2. (a), (b):
Visualizing the quantized values of 0 to 30 in the two rep-
resentations. (c), (d): Normalized distribution of weights for a
layer in MobileNet-V2 quantized using the two representations
when compared with the original fp32 values.

reaches the restricted EB number, we get the final RSD-based
fine-tuned value. Fig. 1 presents several examples of this fine-
tuning process. It is worth noting that standard 2’s complement
representation is actually a particular case of signed-digit, with
only the MSB can be the ‘−1’ (1̄) term in negative values.

By introducing subtraction into shift & add operations, RSD
representation can make the value after fine-tuning closer to
the original value compared with standard 2’s complement. For
instance, in Fig. 1, if we want to restrict 30(int8) with the
EB number of 2 based on 2’s complement, the quantized value
will be 8’b00011000(24) with 30 − 24 = 6 error. But
for the RSD-based scheme, as shown in Fig. 1, the quantized
value is still 30 without any error. Fig. 2 (a) and (b) present
the quantized numbers based on the two representations under

the restriction of 2 EB, in which the RSD method curve is
closer to linear mapping, thus it introduces less quantization
error. Besides, Fig. 2 (c) and (d) further present the normalized
weights distribution of two representations for one layer in the
MobileNet-V2 model, in which the post-quantized weights dis-
tribution of RSD-based method remains closer to the original
floating-point (FP32) one. It can be concluded that the RSD
method adapts to the original numbers better than the standard
2’s complement.

Since DNN models generally tend to have different tol-
erance to the numerical precision of each layer, we apply
layer-wise fine-tuning for the weights, i.e., each layer has
an identical number of EB (EBL). All weights that need
to be mapped for bit-serial computations will be fine-tuned
according to this value based on the above algorithm. After
obtaining the fine-tuned weights based on RSD representation,
the framework will further encode them into the positions of
‘1’ bits so that the hardware can skip ineffectual bits and
achieve bit-sparsity. Fig. 1 shows the encoding process, and
we define the encoded weights into two parts: bit-index of EB
(IDX), which indicates the index of the non-zero bit starting
from LSB, and an extra bit indicating ‘1’ or ‘1̄’ (SEL). For
instance, 8’b0010001̄0(30) has two non-zero bits, and
their indices are 1 (‘1’-bit) and 5 (‘1̄’-bit), so the encoded
results will be (1, 001) and (0, 101), as shown in Fig. 1. The
EBL is also set up as the hyper-parameter for the hardware
control. Since our framework focuses on static quantization
of weights, this process will be performed offline without
introducing additional overhead to the hardware. It is worth
noting that although RSD encoding based on the position
of ‘1’ bits reduces the bitwidth (from 8 to 4), it increases
the amount of weights data. In our framework, we should
carefully control the EBL for each layer and the workload
split to ensure that the increased data I/O will not affect the
computing performance improvement. We will discuss this
issue in Hardware Architecture.

B. Hardware Design

1) Bit-serial Multiplier: Fig. 3 presents the bit-serial mul-
tiplier based on the RSD representation of weights. The
circuit consists of data registers, a negator for calculating the
opposite of activations (NEG), a barrel shifter, and a partial
product accumulator (PPA). According to the discussion in
Section III-A, the fine-tuned weights are encoded as the bit-
position of the effectual bits (IDX, 3-bit), with an additional
bit indicating addition/subtraction (SEL, 1-bit). The combined
4-bit weights are serially input to the multiplier, while the
activations are represented in the original standard binary.
Firstly, the SEL bit selects the input activation or its opposite to
the subsequent operations to realize the subtraction operation
in RSD. After that, the barrel shifter shifts the activation
according to the input IDX to get the partial product. The
accumulator sums up the partial products based on the target
EB for the current layer. Fig. 3 also gives an example (6× 30
based on (EBL = 3) in which the multiplier needs three
cycles for one multiplication. Although the encoded weight

+M
U

XN
EG

1 0 0 1

0 1 0 1

Weight (RSD)

A
ct

iv
at

io
n

EB = 3:
3 Cycles for
a multiply

WGT Reg

AC
T

Re
g

PS
U

M
 R

eg

RSD-Encoded
weight = 30

Activation = 6
8-bit

Bit-serial PE

add/sub shift num

Out = 6≪5 + 6≪2 − 6≪1

(a) Bit-serial PE

<<

Ba
rr

el

Sh
ift

er

PPA

IDXSEL

001001!10

serial

(b) Bit-serial flow

0 0 1 0

Fig. 3: Bit-serial PE and the computing dataflow. The bit-serial
scheme needs EB cycles to compute a multiplication.

× +
DSP48

ACT1 ACT0

Weight

27b

18b

27b

18
b

Combined ACT PSUM

W
ei

gh
t

INT8 Optimization

PSUM0 45bPSUM1

ACT0×Weight
ACT1×Weight

Fig. 4: Combined MAC operations on DSP48 [23]. Two int8
MACs are combined in this work.

based on RSD increases by 1-bit compared to the standard
binary method (3-bit), the total length of 4-bit makes it adapt to
storage alignment requirements, which is suitable for hardware
implementation. Since the bit-serial multiplier takes multiple
cycles for one multiplication, we need to limit the EBL to
ensure the bit-serial multiplier with bit-sparsity can be faster
than the conventional parallel one.

2) Combined MACs on DSP: As for the bit-parallel MACs
based on hard blocks (DSPs on FPGA), the weights mapped
to this part will not be fine-tuned and encoded (i.e., they
will maintain the original 2’s complement). We implement
the combined operations by mapping multiple MACs into
one DSP block to maximize the utilization rate, as Fig. 4
shows. The input bitwidth of DSPs on modern FPGAs is
usually designed to be relatively large (e.g., 27-bit and 18-
bit in Xilinx DSP48E2). Hence, it is efficient to implement
combined MACs by separating different numbers with guard
bits to improve the computation performance further [23], [24].
Specifically, if the scenario targets int8 as the precision,
this method can map two MACs in one DSP to reduce the
computation latency by half. Note that we do not apply RSD
method for the weights processed by DSP, hence the input
activations and weights are all based on pre-trained int8
with 2’s complement representation. As claimed before, 2’s
complement is a particular case of signed-digit, so the run-
time process of our design mixes signed-digit for different

BPPE BPPE BPPE
BSPE BSPE BSPE

BPPE BPPE BPPE

BPPE BPPE BPPE

BSPE BSPE BSPE

BSPE BSPE BSPE

A
ct

iv
at

io
n

Bu
ff

er

Weight Buffer for BPPEs

O
utput Buffer for BSPEs

Weight Buffer for BSPEs

O
utput Buffer for BSPEs

External Memory

Programmable Logic

Fig. 5: Heterogenous architecture based on bit-serial PE
(BSPE) and bit-parallel PE (BPPE). Both the BSPEs and
BPPEs are connected as systolic arrays, and the activations
are shared between the two types of PEs.

resources on FPGAs.
3) Heterogeneous Architecture: With the specific designs

for both LUTs and DSPs, Fig. 5 presents the proposed
heterogeneous architecture for higher peak performance. The
accelerator consists of bit-serial processing elements (BSPE)
and bit-parallel PE (BPPE) for different types of resources,
targeting bit-serial and bit-parallel computation, respectively.
We apply a systolic array as the connection between both
BSPEs and BPPEs for homogeneous control. As discussed
before, the weights mapped into the BSPEs will be fine-
tuned and encoded before being transferred to the hardware,
but the weights mapped to the DSP remain in the original
format. Therefore, we deploy separate weight buffers in the
two types of PEs to store different weight representations.
Furthermore, since we only target bit-serial MACs for weights
to achieve bit sparsity, neither the activations are quantized
nor fine-tuned. Therefore, we implement a global activation
buffer to reuse the activations between the two types of PEs
and reduce data communication overhead between on-chip
buffers and the external memory. The discussed heterogeneous
architecture can be mapped to the FPGA layout since the
BSPEs only utilizes LUTs. Hence, the proposed architecture
can be implemented on FPGA with better timing even though
the LUT logic is heavily utilized for computation.

To improve efficiency and simplify control logic, we select
output stationary as the dataflow for the systolic arrays [25].
For bit-serial operations in the BSPE, it only consists of
the bit-serial multiplier and scratchpads. Since in the output
stationary dataflow, the output activations will not move until
all the partial sums are accumulated, the accumulation of
partial sums can be efficiently integrated into the PPA in
the multiplier, to reduce the resource overhead. By applying
this 1D bit-serial dataflow, we can exploit bit sparsity and
achieve higher computation speedup. On the other part, each

EX

WB

LD

Time

Double-buffer

…

Double-buffer

Tile 0 Tile 1 Tile 2

Tile 0 Tile 1 Tile 2

Tile 0 Tile 1 Tile 2
BS Engine EX

BP Engine EX IDLE

Shared IFM

BS W BP W

Fig. 6: Inter-tile dataflow in the proposed architecture. The
dataflow is tile-pipelined between the three stages, with the
double-buffer scheme.

BPPE takes a DSP for the combined MACs to maximize the
computation performance. Similar to the bit-serial MACs, due
to the characteristics of modern DSP design, the accumulator
summing up the partial sums can still be integrated into each
DSP. With the help of these optimizations, our hardware
design reduces the LUT overhead other than computation
logic, allowing a more extensive systolic array of BSPEs.
Note that the proposed architecture is not tailored for one
FPGA platform, since the accelerator is based on an RTL
template with a header file and can be easily modified for
various FPGAs.

The accelerator performs inference of the DNN model layer-
wise, and the tile is the basic block running on it. When
it starts processing a layer, the accelerator first loads (LD),
executes (EX), writes back (WB) each tile, and then repeats
for all tiles. The global controller handles the weight-loading
process according to the current layer’s EBL and the ratio of
workloads in the two types of PEs. Besides, since the memory
hierarchy of the proposed architecture is based on the double-
buffer strategy, the three stages can be pipelined through
processing, greatly enhancing the throughput and reducing the
latency, as Fig. 6 shows.

As the BSPE and BPPE target different weight workloads,
how to allocate the number of weights processed by the
two types of PEs will affect the computing performance of
the accelerator. We define the weight-split ratio r as the
proportion of bit-serial weights to the total weights, i.e., r =
weightBS/weightTotal, to partition the workloads. Since the
RSD-based bit-serial multiplication has a larger computation
latency than the DSP, the workload of the BSPEs has a more
significant impact on the overall computation latency. In addi-
tion, the final hardware latency also relates to data I/O. When
the weight of the BS part increases, the amount of weight data
obtained by fine-tuning based on different EBL may increase
(e.g., EBL = 3) or decrease (e.g., EBL = 1). Therefore,
to complete the hardware/software co-design framework, we
still need a hardware analytical model to search the optimal
schedule/dataflow and the weight-split ratio r, which will be
introduced in the next part.

C. Cost Model and Scheduler

1) Hardware Abstraction Model: For the cost model, we
need to abstract the hardware to build a hardware overhead
model as the basis for the performance model. Given an

architecture based on the proposed design, we define a series
of parameters to describe the architecture. The BSPE and
BPPE generally have different systolic array scales limited
by the FPGA resources. We use BSr, BSc, BPr, BPc as
the numbers of rows & columns in BS cores and BP cores,
respectively. Based on the array scales, we can formulate the
utilization of LUTs and DSPs:

LUT utl = LUTBSPE × BS r × BS c

DSPutl = DSPBPPE × BPr × BPc

(1)

in which the LUTBSPE and DSPBPPE indicate the LUT
& DSP consumption in one BSPE and BPPE, respectively.
As for the buffers, we assume each row/column of the two
systolic arrays is connected with an identical number of
BRAM36 (BRAMunit) as the buffer/scratchpad. Hence, the
total utilization of BRAM is:

BRAM utl = (BSn + BPn)× BRAM unit

BSn = BS r + 2× BS c

BPn = BPr + 2× BPc

(2)

To simplify the framework and remain the discussion point
in representation, this work does not discuss the hardware-
schedule co-search based on the utilization model. For a
specific FPGA device, we only set up a unique architecture for
all DNN models. Still, given an FPGA device and a hardware
architecture, it must be ensured that the total utilization does
not exceed the limitation of the device.

2) Latency Model & Scheduler: We apply the widely used
6-dimension for-loop topology as the DNN model abstraction
[26], [27]. Based on the for-loop model, we tile the output
channel (K), output feature map height (H), width (W), and
input channel (C) dimensions while keeping the tile size in the
kernel height (I) & width (J) same with the DNN model to
limit the design space. The fully-connected (FC) layers can be
regarded as convolutional layers with H,W, I, J = 1. Define
the DNN layer size M = (K,H,W,C, I, J) and the tile size
of each dimension as T = (tK , tH , tW , tC , tI , tJ) and the
total number of tiles as NT , we have:

NT = ⌈M/T⌉ = ⌈K/tK⌉ × ⌈H/tH⌉ × ⌈W/tW ⌉ × ⌈C/tC⌉
(3)

To reduce the search space, we do not tile the I and
J dimensions (i.e., tI , tJ = I, J). The scheduler is also
responsible for searching the optimal workload partitioning
ratio r. Based on the tile size of each dimension, EBL and r,
the tile sizes of the input feature map (Si), weights (Sw), and
output feature map (So) can be calculated as:

Si = tC × {(tH − 1)× str + tI} × {(tW − 1)× str + tJ}

Sw = r ×
∏

K,C,I,J

T× EBL × 0.5 + (1− r)×
∏

K,C,I,J

T

So =
∏

K,H,W

T = tK × tH × tW

(4)

where the str is the convolution stride given by the DNN
model. The 0.5 factor in Sw indicates that the weights for bit-
serial computation have lower bitwidth (4-bit in the selected
int8 case). Introducing the memory bandwidth BW into our
model, the latency of LD and WB stages can be formulated.
Besides, according to the roofline model [28], we define the
communication latency Latcomm as the maximum of LD and
WB latencies:

LatLD = ⌈(Si + Sw)/BW ⌉, LatWB = ⌈So/BW ⌉
Latcomm = max(LatLD,LatWB)

(5)

As for the computation latency of one tile, we adopt the
cycle-accurate simulator in SCALE-Sim [25] and ANT [29],
based on GEMM backend. When calculating as the output-
stationary dataflow, the systolic depth is tC × tI × tJ , and
the tile is divided into several sub-tiles based on the array
size. Since the computation flows in BSPEs and BPPEs are
different (bit-serial vs. bit-parallel), we define two computation
latencies and use the maximum as the final one:

LatBS =
∏
C,I,J

T× EBL × ⌈tH × tW /BS r⌉ × ⌈tK/BS c⌉

LatBP =
∏
C,I,J

T× ⌈tH × tW /BPr⌉ × ⌈tK/(BPc × 2)⌉

Latcomp = LatEX = max(LatBS,LatBP)
(6)

where the BPc × 2 factor in LatBP is the result of combined
MACs optimization in int8 case. Finally, considering the
pipeline starting and ending stages in Fig. 6, the total latency
for calculating this layer is:

LatL = NT × LatEX + LatLD + LatWB (7)

With the latency model, we can set up the scheduler by
searching all the possible tiling sizes and the weight-split
ratios r of the current layer and find the optimal size &
ratio combination. During brute-force searching, the tile size
of feature maps and weights should not exceed the buffer
size (BUF). Based on the given architecture, we can trivially
calculate the buffer size and BRAMunit setup. Considering
the DNN model has m layers, the problem can be formulated
as follows:

FPGA Device

DNN Models

Architecture

Hardware
Model

RTL Deploy

QAT
Fine-tune

v
MSE

Latency

Array Scale
Buffer Size
BS & BP Engine
…

Kernel Size,
Feature Size,
Stride…

Network
Topology

Schedule Weight

Latency-driven
Mixed-EB
Search

Fig. 7: Hardware-aware quantization framework. The hardware
model generates latencies with different combinations of EBL

for the latency-driven mixed-EB search algorithm.

min
T,r

m∑
j=1

LatL(j)

s.t. Si ≤ BUF i, Sw ≤ BUFw, So ≤ BUF o

(8)

The scheduler is deployed in the host CPU to generate the
optimal dataflow, partitioning, and run-time instructions for
the FPGA devices, based on the input DNN model and EBL

configuration. Besides, the design space exploration can moti-
vate the developer, using the metrics as a guide to developing
the host scheduler in different platforms with faster search
algorithms. Moreover, it can also be used for speedup-accuracy
trade-off to find the optimal EB configurations of each layer,
which will be discussed in the following subsection.

D. Hardware-aware Mixed-EB Quantization

As discussed before, our RSD-based fine-tuning algorithm
changes the value of weights, slightly affecting DNN inference
accuracy. To support the trade-off between accuracy and
latency for different scenarios, we develop a hardware/software
co-design DNN acceleration framework based on the proposed
architecture and weight fine-tuning method to find the optimal
number of EB (EBL) for each layer. This part introduces our
mixed-EB search methodology and the optimization based on
the sub-gradient algorithm.

1) Quantization Metrics: Mean Squared Error (MSE) is a
common metric to effectively evaluate the accuracy of the
post-quantization DNN models [29]. The quantized model
achieves higher accuracy with a lower MSE. Here we use MSE
as a metric to measure the quantization error and facilitate the
search process, defined as:

MSE =

√
Σn

i=1

(
x− x̂

σi

)2

, (9)

where x and x̂ are respectively the original int8 and
RSD-quantized values, and σi is the standard deviation of
the tensor distribution. Another metric for the quantization
scheme is latency (LatL). We introduce two functions from
the scheduler to build the quantization scheme, TOTAL LAT
and LAYER LAT, which are responsible for calculating the

Algorithm 1 Latency-driven mixed-EB search strategy

Input: DNN model M with m layers {L1, L2, ...Lm}, latency
constraint ω, top-k parameter k

Output: Layer-wise EB of weights A = (EB1, EB2, ..., EBm)
1: Initialize A = (3, 3, ..., 3)
2: Lat base← TOTAL LAT(M,A), speedup← 1
3: while speedup does not meet ω do
4: lw lat← LAYER LAT(M,A) ▷ Layer-wise latency
5: lat top← LAYER SEL(lw lat, k) ▷ Select top-k layers
6: layer list← MSE RANK(lat top) ▷ MSE Re-rank
7: REDUCE EB(layer list,A) ▷ Reduce EB in order
8: end while
9:

10: procedure REDUCE EB(list,A)
11: for l = 1→ k do
12: Degrade Alist[l] : EBL = 3 → 2 or EBL = 2 → 1
13: speedup← TOTAL LAT(M,A)/Lat base
14: break if speedup ≥ ω
15: end for
16: end procedure

total latency and layer-wise latency under the current EB
configuration, respectively. The latency formulation of these
two functions has been presented in Section III-C.

2) Mixed-EB Search Strategy: Based on the quantization
error MSE and latency metrics, we propose a speedup-based
optimization strategy to suit different application scenarios
with speedup constraint ω, as shown in Fig. 7. Our framework
can limit the speedup to no less than ω for different real-
time requirements to ensure hardware performance while
minimizing the quantization error (MSE). In other words,
the quantization selection of A = (EB1, EB2, ..., EBm) for
m layers with mixed-EB quantization can be searched by
the strategy. Eqn. (10) formulates the optimization problem,
in which the strategy aims to minimize the quantization
error while meeting the speedup constraint ω. The baseline
latency (Latbase) here refers to the de facto design where
all the computations are mapped into DSP only with int8
representations, and we also can get the value by the scheduler.

min
A

m∑
j=1

MSE (j,A[j])

s.t. ω×
m∑
j=1

LatL(j,A[j]) ≤ Latbase.

(10)

The hierarchical mixed-EB quantization of weights leads to
a vast design space. In our mixed-EB searching framework,
we mainly support the selection of EBL = 1, 2, 3 for better
hardware efficiency. Assuming the DNN model has m layers,
the total possible solutions will be (3× 3)m. A heuristic top-
k search algorithm was devised to find a near-optimal and
efficient solution. Algorithm 1 describes the proposed heuristic
search algorithm. We first obtain the total baseline latency
performance by TOTAL LAT function. Then, the algorithm
iteratively calculates layer-wise latency by LAYER LAT and
selects k layers with the largest latency as candidates since
we intend to quantize the slowest layer first to obtain a better

TABLE I: Mixed-EB speedup results with different constraints
ω. A larger ω means a higher speedup and a more aggressive
quantization strategy.

Model ω Layer-wise Mixed-EB Result A Speedup

VGG-16

1.5 [3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3] 1.52
1.6 [2 3 2 2 2 3 2 2 3 3 3 2 3 3 3 2] 1.60
1.7 [2 2 2 2 2 3 2 2 3 2 3 2 2 2 2 2] 1.70
2.0 [2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2] 2.00
2.1 [1 1 2 1 1 1 1 2 2 1 2 1 2 1 2 1] 2.14
2.2 [1 1 2 1 1 1 1 2 1 1 2 1 2 1 1 1] 2.24

ResNet-18

1.5 [3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3] 1.51
1.6 [2 3 2 3 2 3 3 3 2 2 2 3 3 2 2 2 2 3 2 3 2] 1.62

1.65 [2 3 2 3 2 3 2 3 2 2 2 3 3 2 2 2 2 3 2 3 2] 1.65
1.7 [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2] 1.71
1.8 [2 2 2 2 2 2 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1] 1.84
1.9 [2 2 2 2 2 2 2 1 1 1 1 1 2 2 1 1 1 1 2 1 1] 1.90

overall end-to-end speedup. In addition, to obtain the optimal
solution with the smallest MSE, we also calculate the MSE of
each candidate and reorder them in ascending order of MSE.
The search algorithm reduces the EB of each candidate one
by one to quantify the lowest MSE layer first. After that,
the engine recalculates the latency and selects the next top-
k candidate in the next iteration. The whole iteration stops
when the end-to-end speedup constraint is satisfied. After the
iteration stops, the framework fine-tunes the weights based
on the RSD encoding scheme. It applies quantization-aware
training (QAT) to maintain inference accuracy, which is a
commonly used method in quantization works like [29], [30].

To illustrate, our framework can search different mixed-EB
combinations in this optimization problem, Table I shows the
search results based on different constraints ω on VGG-16 and
ResNet18 model. It indicates that a larger ω represents a more
aggressive speedup, so the searched mixed-EB result has more
layers with a smaller number of EBL, degrading from 3 to
1. Besides, the final speedup is close to the input constraint,
proving that the search result is a near-optimal solution in the
design space.

IV. EVALUATION

A. Experimental Setup

The proposed accelerator is designed and implemented with
Verilog HDL. We implemented the accelerator on the Pynq-
Z2 (XC7Z020), Ultra96 (ZU3EG), and ZCU102 (ZU9EG)
platforms. XC7Z020 is a lightweight FPGA device for testing
scenarios with low memory bandwidth (in our setup, 64-
bit data width in LD/WB channels) and limited resources.
Since ZU3EG and ZU9EG are based on Xilinx Ultra-scale
SoC, they have higher memory bandwidth (128-bit in LD/WB
channels), while the ZU9EG device has more resources for
computation. We apply the same hardware architecture for all
DNN models in this experiment, as Table II shows. We do
not fully utilize the fine-grained resources (i.e., LUTs) for BS
cores to leave enough space for data pre- and pro-processing
in real-world applications. For the DNN models, we conduct
the experiments based on VGG16, ResNet18/50, MobileNetV2
and emerging models like Vision Transformer (ViT) [31]

TABLE II: Hardware architecture parameters setup on FPGAs

FPGA
Devices

Architecture Parameters Memory Bitwidth BW
BSr BSc BPr BPc

XC7Z020 40 40 14 15 64-bit (8 Bytes)
ZU3EG 48 48 16 16 128-bit (16 Bytes)
ZU9EG 80 80 48 48 128-bit (16 Bytes)

TABLE III: Accuracy comparison between the RSD encoding
and the standard representation (2’s complement) under the
same constraint of EB number.

DNN Models Post-quantized Top-1 Accuracy Improv.

RSD Encoding 2’s complement
(Reported in [12])

ResNet-18 69.72% 69.54% 0.55%

ResNet-50 76.05% 76.19% 0.27%

MobileNet-V2 71.16% 68.49% 2.54%

on ImageNet classification. We use the post-quantized INT8
weights/activations from PyTorch and a conventional hardware
design implementing MACs only on DSPs as the baseline (i.e.,
BSr and BSc = 0). For each DNN model, we train 3 ∼ 5
fine-tuning epochs for QAT. To conduct a fair comparison, the
training setup and the hyper-parameters are kept the same for
all types under evaluation.

B. Encoding Scheme

As illustrated before, our RSD encoding can make the
fine-tuned value closer to the original value than standard
2’s complement representation. Hence it has the potential for
higher accuracy with smaller quantization error. We compare
the accuracy after fine-tuning with the previous work BitPruner
[12], which applied the standard representation. Table III
shows the accuracy improves from 0.55% to 2.54% in the
selected DNN models based on the RSD encoding scheme.
In terms of the hardware part, although the RSD method
introduces the SEL bit for selecting addition or subtraction,
the bit-serial PE does not have extra overhead compared with
the conventional bit-serial design in [10]–[12] because the
hardware design in these works still needs to handle negative
activations in the shift&add operations. With higher post-
quantized accuracy and negligible hardware overhead, it can
be concluded that our RSD encoding approach is better than
standard 2’s complement for LUT-based synchronized bit-
serial computation (i.e., with the same number of EB), in terms
of maintaining accuracy of DNN inference.

C. Theoretical Analysis for Peak Performance

As discussed in hardware design, our accelerator can en-
hance the peak performance of the target device since the
heterogeneous architecture maximizes the computation capa-
bility. Based on the roofline model [28], we calculate the
peak performance of the three different devices based on
the architecture parameters in Fig. 8. We consider each PE

XC7Z020 ZU3EG ZU9EG
0

1

2

3

4
N

or
m

al
iz

ed
 P

ea
k

Th
ro

ug
hp

ut

2.31x
2.78x 2.84x

1.0x 1.0x 1.0x

Heterogenous Arch.
DSP Only

Fig. 8: Theoretical analysis of peak performance for three
devices based on all the EBL = 2. The results are normalized
based on DSP-only throughput individually for each device.

processes one MAC operation for the BS engine in EBL

cycles. To demonstrate that our framework can enhance the
peak performance by the bit-sparsity-aware heterogeneous
architecture, we present the improvement of the theoretical
peak performance in Fig. 8, comparing the heterogeneous
design and the DSP-only conventional design under the same
clock frequency. We also apply the combined MAC operations
(Fig. 4) in the DSP-only design. All the heterogeneous results
are normalized based on DSP-only throughputs. The theoreti-
cal results show that with the bit-sparsity-aware heterogeneous
architecture, MSD framework can achieve 2.31×, 2.78× and
2.84× higher throughput on XC7Z020, ZU3EG, and ZU9EG
devices. Therefore, the MSD framework has great potential to
accelerate computation-intensive models by enhancing peak
performance significantly.

D. Accuracy-Speedup Trade-off

To demonstrate the proposed hardware-aware mixed-EB
quantization framework can balance between accuracy and
speedup, we set up different constraints, quantize the ResNet50
and VGG16 models based on the search strategy, and use the
DSP-only hardware as the baseline. According to Eqn. (10),
the search framework obtains different combinations of EBL

for each layer. Fig. 9 presents the accuracy-speedup trade-
off based on the mixed-EB framework on the Ultra-96 FPGA
(ZU3EG). Generally, an increase in the latency constraint
ω leads to higher speedup with accuracy loss because the
framework will search for lower EB numbers to meet the
demand. Besides, the quantized model can maintain a closer
accuracy to the original model while still delivering a decent
speedup (e.g., in VGG16, only 0.1% accuracy drop with
2.0× speedup). Moreover, our proposed framework with the
heuristic search algorithm can quantize DNN models with
trade-offs along the curves, which can serve the different
requirements with various latency/accuracy constraints.

E. Comparison with the State-of-the-art

Table IV thoroughly compares the proposed accelerator de-
sign with the state-of-the-art FPGA accelerator works in terms
of data precision, resource cost, post-quantization accuracy,
latency, throughput, and compute efficiency. The throughput

DSP-only =1.7 =1.75 =2 =2.1 =2.2 =2.5
0.5

1.0

1.5

2.0

2.5

VG
G

16
(S

pe
ed

up
)

Speedup

DSP-only =2.35 =2.5 =2.6 =2.75 =3.1 =3.5
0.5

1.0

2.0

3.0

Re
sN

et
50

(S
pe

ed
up

) Speedup

72.0

72.5

73.0

73.5

74.0

VG
G

16
(T

op
-1

 A
cc

)

Acc

73.5
74.0

75.0

76.0

77.0

Re
sN

et
50

(T
op

-1
 A

cc
)Acc

Fig. 9: Normalized speedup and post-quantization accuracy
with different latency constraints ω on ZU3EG. Our frame-
work can reduce the latency by 1.7× to 3.5× with negligible
loss of accuracy on the VGG16 and ResNet50 models.

is calculated by the inference latency with the batch size set
to 1. We set up all the layers to have EBL = 2 in our
design since the accuracy-latency trade-off results show that
the accuracy drop is negligible in this scenario. Besides, the
measurement does not include the im2col pre-processing
latency. Compared with Mix-and-Match [1] and N3H-Core [3],
although they apply mixed-precision quantization that leads
to lower computation latency and fewer data I/O, our work
is still comparable with them due to the bit-sparsity opti-
mization. For the compute-intensive model Resnet-18 on the
XC7Z020 device, the latency result overpasses Mix-and-Match
[1] and N3H-Core [3] as 1.79× and 1.36×, respectively, even
though we do not fully utilize the memory bandwidth. For
the lightweight MobileNet-V2 model with small computation
workloads, most layers are bounded in communication since
we only apply 64-bit bitwidth per channel (i.e., we did not
fully utilize the memory bandwidth compared with the prior
works). Therefore, the previous works perform better than ours
due to the mixed-precision optimization with smaller data I/O.
Nevertheless, since the RSD-based bit-serial strategy keeps the
data precision of weights and activations, our post-quantization
accuracy is 4.91% higher than the N3H-Core.

Our work still shows inspiring results compared to other
general FPGA accelerators in DNN inference. Our work is
faster than the Angel-eye [33] at 1.27× regarding latency
and throughput on VGG-16 due to the bit-sparsity. Besides,
compared with the Vitis-AI [34], a vendor-specific framework
in the industry for DNN accelerators on FPGA, we reduce
the latency of ResNet-18 and ResNet-50 on ZU3EG as 44%
and 5%. For the models on ZU9EG, our results are still
comparable with the Vitis-AI, even though they set up 1.34×
higher clock frequency. Finally, we also test our framework
on one of the emerging transformer models, ViT-base, to
demonstrate our universal design. The throughput result is

TABLE IV: Board-level comparison with state-of-the-art FPGA accelerators

Works DP* FPGA
Devices

Frequency
(MHz)

Resource Cost DNN
Models

Top-1
Acc.§

Latency
(ms)

Throughput
(GOPS)

Compute Efficiency

kLUT DSP BRAM GOPS/kLUT GOPS/DSP

DNNExplorer [32] 16 KU115 200 - 4686 - VGG-16 - 18.05 1702.3 - 0.36

Angel-eye [33] 8 XC7Z020 125 29.87 190 85.5 VGG-16 - 364.00 84.3 2.83 0.44

Auto-ViT-Acc [2] MP1 ZU9EG 150 179.0 1555 - DeiT-base 81.14% - 1970.3 11.01 1.27

Vitis-AI [34] 8
ZU3EG 287 - 326 126 ResNet-18 - 13.80 270.9 - 0.83

ResNet-50 74.50% 30.80 250.0 - 0.77

ZU9EG 287 - 2130 765 ResNet-18 - 5.10 713.2 - 0.33
ResNet-50 74.50% 12.85 599.1 - 0.28

Mix&Match‡[1] MP1 XC7Z020 100 28.29 220 56 ResNet-18 70.27% 47.10 77.0 2.72 0.35
MobileNet-V2 65.64% 8.29 71.8 2.54 0.32

N3H-Core‡[3] MP1 XC7Z020 100 39.62 220 137 ResNet-18 70.45% 35.79 101.3 2.56 0.46
45.76 220 137 MobileNet-V2 66.25% 7.51 80.1 1.75 0.36

MSD-Ours 8†

XC7Z020 100 38.09 214 139
VGG-16 73.37% 287.18 107.9 2.83 0.50

ResNet-18 69.72% 26.31 138.3 3.63 0.65
MobileNet-V2 71.16% 16.40 38.9 1.02 0.18

ZU3EG 214 55.71 264 194

VGG-16 73.37% 74.22 417.6 7.93 1.58
ResNet-18 69.72% 7.72 471.7 8.96 1.79
ResNet-50 76.05% 29.06 283.6 5.39 1.07

MobileNet-V2 71.16% 7.41 86.1 1.64 0.33

ZU9EG 214 151.69 2312 771

VGG-16 73.37% 52.70 588.2 3.88 0.25
ResNet-18 69.72% 5.69 639.8 4.22 0.28
ResNet-50 76.05% 15.94 516.9 3.41 0.22
ViT-base¶ 79.28% 22.30 1481.4 9.77 0.64

* Data precision in the hardware setup. 1 Mixed-precision based on bitwidths or formats. † We set all the EBL = 2 based on int8 in this comparison.
§ Accuracy results in our work are based on QAT. ‡ For a fair comparison, we only selected results with batch size = 1. ¶ We only apply RSD in the MLP blocks.

comparable with the state-of-the-art FPGA accelerator, Auto-
ViT-Acc [2] targeting a more hardware-friendly variant, DeiT-
base. It is worth emphasizing that our work does not perform
the best on lightweight models since they are not compute-
intensive (e.g., MobileNet-V2), and the bit-sparsity properties
cannot achieve higher performance when DNNs are bounded
in communication. To conclude, by targeting a specific device,
the proposed MSD scheme reaches promising improvement in
the computation-bound models [28] due to the enhancement
of peak performance.

V. CONCLUSIONS

This work proposed MSD framework, an FPGA-tailored
and heterogeneous DNN acceleration framework that utilizes
both LUTs and DSPs as computation resources and to ex-
ploit bit-sparsity. The RSD data representation enables MSD
framework to fine-tune and encode the DNN weights into a
bit-sparsity-aware format, making the bit-serial computation
on LUTs more efficient. Furthermore, MSD framework uses
a latency-driven algorithm to search for the optimal schedule,
the number of EB, and the workload partitioning ratio for each
layer. Evaluation results on various DNN models and edge
FPGA devices demonstrate that MSD framework achieves
1.36× speedup when compared with the state-of-the-art on
ResNet-18 model, and 4.91% higher accuracy on MobileNet-
V2. In the future, we will explore more efficient scheduling
methods for workload splitting in the heterogeneous archi-
tecture and EB selection in the bit-serial computation and
exploit FPGA-layout-tailored hardware design to enhance the
hardware clock frequency further.

VI. ACKNOWLEDGEMENTS

This work was supported in part by the Research Grants
Council (RGC) of Hong Kong under the Research Impact Fund
project R7003-21 and the Theme-based Research Scheme
(TRS) Project T45-701-22-R. This work was also supported
by AI Chip Center for Emerging Smart Systems (ACCESS),
sponsored by InnoHK funding, Hong Kong SAR.

REFERENCES

[1] S.-E. Chang, Y. Li, M. Sun, R. Shi, H. K.-H. So, X. Qian, Y. Wang, and
X. Lin, “Mix and match: A novel FPGA-centric deep neural network
quantization framework,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2021, pp.
208–220.

[2] M. Sun, Z. Li, A. Lu, H. Ma, G. Yuan, Y. Xie, H. Tang, Y. Li,
M. Leeser, Z. Wang, X. Lin, and Z. Fang, “FPGA-aware automatic
acceleration framework for vision transformer with mixed-scheme
quantization: Late breaking results,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, ser. DAC ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 1394–1395.
[Online]. Available: https://doi.org/10.1145/3489517.3530618

[3] Y. Gong, Z. Xu, Z. He, W. Zhang, X. Tu, X. Liang, and
L. Jiang, “N3H-Core: Neuron-designed neural network accelerator via
FPGA-based heterogeneous computing cores,” in Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 112–122. [Online]. Available:
https://doi.org/10.1145/3490422.3502367

[4] Z. Dong, Y. Gao, Q. Huang, J. Wawrzynek, H. K. So, and K. Keutzer,
“HAO: Hardware-aware neural architecture optimization for efficient
inference,” in 2021 IEEE 29th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2021, pp.
50–59.

[5] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 8612–8620.

https://doi.org/10.1145/3489517.3530618
https://doi.org/10.1145/3490422.3502367

[6] S. Li and P. Gupta, “Bit-serial Weight Pools: Compression and arbi-
trary precision execution of neural networks on resource constrained
processors,” Proceedings of Machine Learning and Systems, vol. 4, pp.
238–250, 2022.

[7] A. Delmas Lascorz, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud,
S. Sharify, M. Nikolic, K. Siu, and A. Moshovos, “Bit-Tactical: A
software/hardware approach to exploiting value and bit sparsity in
neural networks,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 749–763. [Online].
Available: https://doi.org/10.1145/3297858.3304041

[8] H. Lu, L. Chang, C. Li, Z. Zhu, S. Lu, Y. Liu, and M. Zhang, “Distilling
bit-level sparsity parallelism for general purpose deep learning accelera-
tion,” in MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, 2021, pp. 963–976.

[9] Y. Hao, Y. Zhao, C. Liu, Z. Du, S. Cheng, X. Li, X. Hu, Q. Guo,
Z. Xu, and T. Chen, “Cambricon-P: A bitflow architecture for arbitrary
precision computing,” in 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2022, pp. 57–72.

[10] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov,
and A. Moshovos, “Bit-Pragmatic deep neural network computing,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, 2017, pp. 382–394.

[11] A. Li, H. Mo, W. Zhu, Q. Li, S. Yin, S. Wei, and L. Liu, “BitCluster:
Fine-grained weight quantization for load-balanced bit-serial neural
network accelerators,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, pp. 1–1, 2022.

[12] X. Zhao, Y. Wang, C. Liu, C. Shi, K. Tu, and L. Zhang, “BitPruner:
Network pruning for bit-serial accelerators,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), 2020, pp. 1–6.

[13] A. Arora, S. Mehta, V. Betz, and L. K. John, “Tensor slices to the
rescue: Supercharging ML acceleration on FPGAs,” ser. FPGA ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
23–33. [Online]. Available: https://doi.org/10.1145/3431920.3439282

[14] M. Langhammer, E. Nurvitadhi, B. Pasca, and S. Gribok, “Stratix 10 NX
architecture and applications,” in The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
57–67. [Online]. Available: https://doi.org/10.1145/3431920.3439293

[15] Y. Umuroglu, L. Rasnayake, and M. Själander, “BISMO: A scalable
bit-serial matrix multiplication overlay for reconfigurable computing,”
in 2018 28th International Conference on Field Programmable Logic
and Applications (FPL). IEEE, 2018, pp. 307–3077.

[16] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). IEEE, 2016, pp. 1–12.

[17] A. Avizienis, “Signed-Digit numbe representations for fast parallel
arithmetic,” IRE Transactions on Electronic Computers, vol. EC-10,
no. 3, pp. 389–400, 1961.

[18] R. M. Hewlitt and E. Swartzlantler, “Canonical signed digit represen-
tation for FIR digital filters,” in 2000 IEEE Workshop on SiGNAL
PROCESSING SYSTEMS. SiPS 2000. Design and Implementation (Cat.
No. 00TH8528). IEEE, 2000, pp. 416–426.

[19] H. Samueli, “An improved search algorithm for the design of multipli-
erless FIR filters with powers-of-two coefficients,” IEEE Transactions
on Circuits and Systems, vol. 36, no. 7, pp. 1044–1047, 1989.

[20] M. Riaz, R. Hafiz, S. A. Khaliq, M. Faisal, H. T. Iqbal, M. Ali, and
M. Shafique, “CAxCNN: Towards the use of canonic sign digit based
approximation for hardware-friendly convolutional neural networks,”
IEEE Access, vol. 8, pp. 127 014–127 021, 2020.

[21] M. A. Hanif, G. M. Sarda, A. Marchisio, G. Masera, M. Martina,
and M. Shafique, “CoNLoCNN: Exploiting correlation and non-uniform
quantization for energy-efficient low-precision deep convolutional neural
networks,” in 2022 International Joint Conference on Neural Networks
(IJCNN), 2022, pp. 1–8.

[22] B. Ahn and T. Kim, “Deeper weight pruning without accuracy loss
in deep neural networks: Signed-Digit representation-based approach,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 3, pp. 656–668, 2022.

[23] Y. Fu, E. Wu, A. Sirasao, S. Attia, K. Khan, and R. Wittig, “Deep
learning with int8 optimization on Xilinx devices,” Xilinx White Paper,
2016.

[24] X. Liu, Y. Chen, P. Ganesh, J. Pan, J. Xiong, and D. Chen, “HiKonv:
High throughput quantized convolution with novel bit-wise management
and computation,” in 2022 27th Asia and South Pacific Design Automa-
tion Conference (ASP-DAC). IEEE, 2022, pp. 140–146.

[25] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A systematic methodology for characterizing scalability of
dnn accelerators using scale-sim,” in 2020 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), 2020,
pp. 58–68.

[26] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
systematic approach to DNN accelerator evaluation,” in 2019 IEEE in-
ternational symposium on performance analysis of systems and software
(ISPASS). IEEE, 2019, pp. 304–315.

[27] R. Shi, Y. Ding, X. Wei, H. Li, H. Liu, H. K.-H. So, and C. Ding, “FTDL:
a tailored FPGA-overlay for deep learning with high scalability,” in 2020
57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020,
pp. 1–6.

[28] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[29] C. Guo, C. Zhang, J. Leng, Z. Liu, F. Yang, Y. Liu, M. Guo, and
Y. Zhu, “ANT: Exploiting adaptive numerical data type for low-bit deep
neural network quantization,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2022, pp. 1414–
1433.

[30] F. Liu, W. Zhao, Z. He, Y. Wang, Z. Wang, C. Dai, X. Liang, and
L. Jiang, “Improving neural network efficiency via post-training quan-
tization with adaptive floating-point,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 5281–5290.

[31] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[32] X. Zhang, H. Ye, J. Wang, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“DNNExplorer: a framework for modeling and exploring a novel
paradigm of FPGA-based DNN accelerator,” in Proceedings of the 39th
International Conference on Computer-Aided Design, 2020, pp. 1–9.

[33] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,
and H. Yang, “Angel-Eye: A complete design flow for mapping CNN
onto embedded FPGA,” IEEE transactions on computer-aided design of
integrated circuits and systems, vol. 37, no. 1, pp. 35–47, 2017.

[34] “Vitis-ai/models/ai-model-zoo at master · xilinx/vitis-ai,”
https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo,
accessed: 2021-11-20.

https://doi.org/10.1145/3297858.3304041
https://doi.org/10.1145/3431920.3439282
https://doi.org/10.1145/3431920.3439293
https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo

	Introduction
	Background & Related Work
	Heterogeneous Architecture in FPGA DNN Accelerators
	Bit-Serial Computing with Bit-Sparsity
	Signed-Digit Representation

	Methodology
	RSD-based Weight Fine-tuning & Encoding
	Hardware Design
	Bit-serial Multiplier
	Combined MACs on DSP
	Heterogeneous Architecture

	Cost Model and Scheduler
	Hardware Abstraction Model
	Latency Model & Scheduler

	Hardware-aware Mixed-EB Quantization
	Quantization Metrics
	Mixed-EB Search Strategy

	Evaluation
	Experimental Setup
	Encoding Scheme
	Theoretical Analysis for Peak Performance
	Accuracy-Speedup Trade-off
	Comparison with the State-of-the-art

	Conclusions
	Acknowledgements
	References

