
NITI: Training Integer Neural Networks Using
Integer-only Arithmetic

Maolin Wang
The University of Hong Kong

mlwang@eee.hku.hk

Seyedramin Rasoulinezhad
The University of Sydney

seyedramin.rasoulinezhad@sydney.edu.au

Philip H.W. Leong
The University of Sydney

philip.leong@sydney.edu.au

Hayden K.H. So
The University of Hong Kong

hso@eee.hku.hk

Abstract

While integer arithmetic has been widely adopted for improved performance in
deep quantized neural network inference, training remains a task primarily exe-
cuted using floating point arithmetic. This is because both high dynamic range and
numerical accuracy are central to the success of most modern training algorithms.
However, due to its potential for computational, storage and energy advantages in
hardware accelerators, neural network training methods that can be implemented
with low precision integer-only arithmetic remains an active research challenge.
In this paper, we present NITI, an efficient deep neural network training frame-
work1 that stores all parameters and intermediate values as integers, and computes
exclusively with integer arithmetic. A pseudo stochastic rounding scheme that
eliminates the need for external random number generation is proposed to facilitate
conversion from wider intermediate results to low precision storage. Furthermore,
a cross-entropy loss backpropagation scheme computed with integer-only arith-
metic is proposed. A proof-of-concept open-source software implementation of
NITI that utilizes native 8-bit integer operations in modern GPUs to achieve end-
to-end training is presented. When compared with an equivalent training setup
implemented with floating point storage and arithmetic, NITI achieves negligible
accuracy degradation on the MNIST and CIFAR10 datasets using 8-bit integer
storage and computation. On ImageNet, 16-bit integers are needed for weight
accumulation with an 8-bit datapath. This achieves training results comparable to
all-floating-point implementations.

1 Introduction

Training of deep neural networks (DNNs) is a lengthy and computationally demanding process that
requires a notoriously large number of floating-point and memory operations, forming a substantial
barrier for rapid deployment and development of new applications and models. While the use of
graphics processing units (GPUs) have been invaluable in addressing this computational need, there
has been a renewed interest in accelerating DNN training with hardware accelerators that employ low-
precision integer arithmetic due to their promised power and energy efficiency advantages. Compared
to computing with single-precision floating-point operations, computing with integer arithmetic,
especially when low-precision datatype such as int8 is used, significantly reduces the time and
silicon area requirement of a system, making them attractive for power and energy-constrained

1https://github.com/wangmaolin/niti

Preprint. Under review.

ar
X

iv
:2

00
9.

13
10

8v
1

 [
cs

.C
V

]
 2

8
Se

p
20

20

https://github.com/wangmaolin/niti

edge deployment, as well as in cost-sensitive cloud datacenters. Training DNNs with integer-only
arithmetic is particularly challenging because of their lack of dynamic range and precision that are
often needed throughout the training process. Even state-of-the-art integer neural network training
frameworks [7, 1] still rely on floating-point arithmetic for at least some portion of the process,
such as for intermediate parameter storage and update, as well as for gradient, error and activation
computation during backpropagation.

In this work, we present NITI, a deep neural network training framework that operates exclusively
with integers. To address the unique challenges of training DNN with integers, NITI has three main
contributions:

1. a novel discrete parameter update scheme that allows low precision integer storage of all
intermediate variables;

2. a hardware-efficient pseudo stochastic rounding scheme that utilizes the extra precision in
intermediate accumulation as an in-situ random number source;

3. an efficient approximation of cross-entropy loss backpropagation using integer-only arith-
metic.

While the long-term goal of NITI is to accelerate DNN training with dedicated hardware accelerators,
the focus of this work is to study the underlying numerical properties of DNN training and to develop
a family of integer-only DNN training algorithms that can achieve comparable accuracy to their
floating-point counterparts. For that, an open-source proof-of-concept software implementation of
NITI is presented here. Particular attention has been paid in this software implementation to ensure
bit-accurate integer operations are performed in CPUs as well as in GPUs that include native integer
matrix-multiplication support.

Using our software implementation as demonstrations, we show that NITI can achieve negligible
accuracy degradation on the MNIST dataset by using only 8-bit integer (int8) operations. On the
CIFAR-10 dataset using VGG-13, also with int8, NITI was able to achieve 88.24% best-1 validation
accuracy when compared with 91.04% achieved by an equivalent floating-point implementation. On
the ImageNet dataset using the original AlexNet, by using 16-bit integers for weight accumulation,
NITI was able to achieve 43.66% top-1 compared to 45.16% with an equivalent floating point
implementation.

In the next section, we summarize related work in integer training. The design of NITI will be
presented in Section 3, followed by experimental results in Section 4. We will conclude and discuss
future enhancements to NITI in Section 5.

2 Related Works

The study of hardware-efficient neural network training can be traced to research in low-precision
neural network inference, which is as a complementary problem. Early studies of binary and ternary
neural networks have already demonstrated the feasibility of using hardware-efficient bit-operations
to replace complex floating-point multiply-accumulate (MAC) operations during training [3, 14, 18].
Moreover, researchers have also argued that such weight quantization during training could serve as
a regularizer that improved the training performance on small datasets [3]. Subsequently, Jacob et
al. extended quantization to 8 bit weights and activations and demonstrated promising results for
deploying DNN models on mobile devices [8]. With a large-scale hardware accelerator, Gupta et
al. [6] further showed that DNNs could be trained with fixed-point weights using 16-bit precision,
and that rounding was crucial to success. They proposed stochastic rounding where the probability of
rounding x to bxc is proportional to their proximity, which has formed the basis of many modern
integer training frameworks.

Beyond weight and activations, recent works have begun to address the challenges of quantizing
gradient and error computation during the backward pass of training. In the work of DoReFa-Net [17],
weight, activation as well as gradients of activations were quantized to allow discretized computation
during back propagation. Similarly, Banners et al. developed a bifurcation scheme that quantized
gradients of activations during training for 8-bit integer operations in mobile processors [1].

Although promising results have been demonstrated in all the above cases, they have all relied on
the use of full-precision floating-point computation in at least some parts of the training process.
In [18, 14, 3, 8, 17, 1], fp32 were used as intermediate storage for weight accumulation, while

2

Table 1: Datatype comparison for various low-precision integer DNN training frameworks

w(infer) w(acc) a g e softmax

TTQ[18] 2 32 32 32 32 fp32
Xnor [14] 1 32 1(32) 32 32 fp32

Binaryconnect[3] 1 32 32 32 32 fp32
Jacob et al. [8] 8 32 8(32) 32 32 fp32

Dorefa[17] 1 32 2(32) 32 6(32) fp32
Banner et al. [1] 8 32 8(32) 32 8(32) fp32

WAGE[16] 2 8(32) 8(32) 8(32) 8(32) fp32
FxpNet[2] 1 12(32) 1(32) 12(32) 12(32) fp32

NITI (this work) 8 8 8 8 8 integer
(32) means the low precision data format is emulated by quantizing fp32 number.

Algorithm 1: Forward and backward passes in NITI for each batch of data X and label Y

/* Forward Pass, with quantized input a(0), sa(0) from X */
1 for each layer l do
2 a

(l)
32 , sa(l) ← INT8MATRIXMULTIPLY(a(l−1),w), sa(l−1) + sw;

3 b←EFFECTIVEBITWIDTH(a(l)
32);

4 a(l), sa(l) ← SHIFTANDROUND(a(l)
32 , sa(l) ,max(0, b− 7));

5 end
/* Backward Pass, with a, sa being final layer’s output, scale */

6 e← INT8LOSSGRADIENT(a, sa, Y);
7 for each layer l in reverse order do
8 g

(l)
32 ← INT8MATRXMULTIPLY(a(l−1), e(l));

9 e
(l−1)
32 ← INT8MATRXMULTIPLY(w(l), e(l));

10 b←EFFECTIVEBITWIDTH(e(l−1));
11 e(l−1), _← SHIFTANDROUND(e(l−1)

32 , _,max(0, b− 7));
12 b← EFFECTIVEBITWIDTH(g(l)

32);
13 g(l), _← SHIFTANDROUND(g(l)

32 , _,max(0, b−mu));
14 w(l) ← w(l) − g(l) ;
15 end

in [16, 2] they were used as a proxy for the low-precision datatype for computation. For efficient
hardware implementations, a training scheme that employs integer arithmetic exclusively such as this
proposed work is highly desirable.

The closest works to NITI that we can identify are the work of FxpNet [2] and WAGE [16]. In
FxpNet, 12-bit fixed point arithmetic was employed throughout the training process to produce a
binary network for inference. In WAGE, weight, activations, gradients and error values were all
quantized to 8-bit integers to train a ternary network for inference. For softmax computation, however,
fp32 were still needed in both cases in order to ensure accurate inference on large dataset. In
contrast, NITI employs integer arithmetic exclusively, even when used in training large networks
for classifying ImageNet dataset with 1000 classes using softmax and have achieved only moderate
accuracy degradation. A summary of the datatype employed in related works is shown in Table 1.

3 An Integer-only Training Framework

NITI operates exclusively on integer arithmetic and is based on the stochastic gradient descent (SGD)
with backpropagation (BP) scheme (Algorithm 1). The major differences between the two rest on the
use of integer arithmetic throughout, and the discrete weight update scheme that is closely tied to the
process of rounding intermediate values back to int8 throughout the algorithm.

3

! " , $%(')

Int8 Matrix
Multiply

>>

>>
-

>>

32-bit
Int8 Matrix

Multiply

Int8 Matrix
Multiply

32-bit

32-bit

) "

* " , $+(')

* ",- , $+('./) 0 ",-

0 "

𝒂("): layer 𝑙 activation(int8 vector)

𝒆("): int8 gradient of layer 𝑙 activation

𝒘("): int8 layer 𝑙 weights

𝒈("): int8 gradient of layer 𝑙 weights

𝑠$
("): Scaling factor associated with 𝒘 of layer 𝑙

𝑠%
("): Scaling factor associated with 𝒂 of layer 𝑙

𝒂&'
("): Activation of layer 𝑙 before rounding(int32 vector)

𝒆&'
("): Gradient of 𝒂(") before rounding(int32 vector)

𝒈&'
("): Gradient of 𝒘(") before rounding(int32 vector)

𝒂&'
(")

𝒈&'
(")

𝒆&'
(")

Figure 1: Integer layer forward and backward pass

Figure 1 shows an overview of the symbols and their datatype employed throughout the algorithm.
As shown in the figure, all the model’s weight values (w), activation (a), gradients of activations
(e) and gradient of weights (g), are stored as 8-bit signed integers (int8). In addition, similar to
the dynamic floating point scheme proposed in [4], weights of the model are paired with a per-layer
int8 exponent (s) such that the actual values are w · 2sw . Apart from quantizing standard floating
point (fp32) data input during initialization, no further quantization is performed in NITI.

3.1 Forward and Backward Pass

At the core of NITI are the forward pass and backward pass of convolution and fully connected layers
performed with integer-only arithmetic. For convolution layers, our framework employed im2col
to reduce convolution operations into matrix-matrix multiplications [9]. As a result, similar to the
case of training fully connected layers, integer matrix multiplies form the dominating operation in our
training framework. With our use of int8 as input, we were able to accelerate this matrix multiply
in our current implementation by leveraging the newly introduced integer matrix multiply function
unit in latest GPUs that were originally designed for inference acceleration [13].

During the forward pass (left side of Figure 1), activation of previous layer (a(l−1)) enters this layer
as int8 with a scaling factor sa(l−1) . The results of the matrix multiply are accumulated in int32
precision and must be rounded back to int8 before propagating to the next layer. This rounding
operation is very important to the success of low precision training and repeatedly appears in forward
pass, backward pass and model weights update. They are shown as shift operators in Figure 1 as they
are combined with the scaling operation in our scheme.

In theory, the output scaling factor sa(l) is simply a sum of the 2 input scaling factors sa(l−1) and
sw. However to make full use of the signed 8-bit precision to represent integer part of the results, an
additional shift operation is performed based on the effective bitwidth of the 32-bit matrix multiply
output. Here, effective bitwidth of an integer matrix V , denoted as B(V), is defined as the minimum
number of bits required to fully represent the maximum value v ∈ V . If b = B(V) > 7, then the
32-bit results are shifted right by b−7 bit, just enough to maximize the use of the int8 datatype. The
fractional part is rounded off using the pseudo stochastic rounding scheme described in Section 3.3
and the scaling factor is adjusted accordingly.

The backward pass involves propagating the error back through the integer network and computing
the gradient of weights in each layer for weight update as shown in right hand side of Figure 1. The
32-bit errors are rounded similarly to the forward pass back into 8-bit values before being propagated
to the next layer. The 32-bit gradients are rounded with special procedures that fuses with the weight
update process as explained in Section 3.2.

3.2 Weight Update

Normally with SGD, the gradient g(l) of layer weights can be computed by a matrix multiplication
between its activation input a(l−1) and gradients of its activation output e(l). The model weights

4

could subsequently be updated by some combinations of this gradient g, the global learning rate and
other heuristics to determine the amount of weight update.

However, due to the limited range of our int8 weights w, the task of maintaining any necessary
precision is challenging, notably due to the range discrepancy between w and the desired update
value. For example, we observed empirically that even in a medium size network like VGG11, direct
application of typical learning rules often resulted in overflow or underflow in the weight update.
Consequently, most of the update values are saturated as ±127 or 0.

Instead, we propose a learning heuristic that combines update with the rounding of gradient for
weight computation in int8.

In particular, let b = B
(
g
(l)
32

)
, then g

(l)
32 is shifted and rounded by b−mu bits to obtain an effectively

mu bits weight update value g(l). Recall that the value of sw for each layer is set during initialization
and remain unchanged during training. As a result, the proposed update heuristic essentially operates
by updating w with small quantum g(l) · 2sw . We have evaluated different values of mu and have
determined that small values of mu in the range of 1 to 3 bits performed well in general. See
Section 4.2 for experimental results. We show empirically that this learning rule has comparable
convergence speed on MNIST and CIFAR10 to SGD with momentum, which is commonly used in
floating point training. On ImageNet, this learning rule has comparable convergence speed with SGD
without momentum.

3.3 Shifting and Rounding

Mapping int32 results from matrix-multiply back to int8 data for downstream computation is
a crucial step that has significant influence in the final training accuracy. To propagate activations
and errors during training, a special shift and round scheme is employed. Using this scheme, the
values in concern (i.e. a and e) are first logically shifted right by an amount that is determined by
their effective bitwidth B(a) and B(e) respectively (See lines 4 and 11 in Algorithm 1). This shift
avoids overflow and maximize the number of useful bits in the final int8 representation. In addition,
the corresponding activation scaling factor sa is adjusted according to maintain correct magnitude.

Next the int32 values are rounded to int8. In the context of NITI, rounding refers to the task of
mapping a 32-bit fixed point number x = 〈q.f〉 to a nearby 8-bit integer x̃. In this notation, q and
f are the integer and fraction parts of x respectively, and the binary point is located at position bp,
which is equal to the bitwidth of f .

As discussed in [6], the use of stochastic rounding with zero rounding bias is crucial to the success of
training neural network with low precision. Stochastic rounding RS(·) can be defined as:

RS(〈q.f〉) =
{
q with probability 1− f · 2−bp

q + 1 with probability f · 2−bp

A typical implementation of the stochastic rounding function would therefore compute the rounding
probability by comparing f with a random number r.

Instead of relying on an external random number source to produce r, we propose a hardware-
efficient pseudo stochastic rounding algorithm that generates in-situ pseudo random number using
the additional bits from the 32-bit input. As shown in Algorithm 2, the proposed scheme operates in
ways similar to the original stochastic rounding function, except the stochastic rounding decision is
now based on comparing values between different portions of f , the fractional parts of the input. Our
current implementation divides the fractional bits into 2 halves for comparison. The more significant
(top) half of f is essentially a truncated version of f , and the less significant (bottom) half of f
now serves as a pseudo random number. As shown in Section 4.1, the proposed pseudo stochastic
rounding scheme is able to support training with comparable accuracy as the original stochastic
rounding scheme.

5

Algorithm 2: Pseudo Stochastic Rounding
Input :q32: 32-bit fixed point number, bp: Binary point
Output :Rounded 8-bit integer q
/* Extract bits for integer (q) and fractional (f) parts from |q32| */

1 q, f ← |q32|[bp+ 7, bp], |q32|[bp− 1, 0];
2 if bp is odd then
3 f ← f � 1/* � 1 represents right shift by 1 bit */
4 bp← bp− 1;
5 end
6 if f [bp− 1, bp

2] > f [bp2 − 1, 0] then
7 q ← q + 1
8 end
9 q ← q · sgn(q32)

3.4 Integer Cross Entropy Loss

After computing the final layer activations, a · 2sa , NITI computes the predicted probability of each
class for the input image using a softmax layer. Assume we have N classes with i ∈ {1 . . . N}, then
ŷi =

eai·2
sa

C is the predicted probability of class i, where C =
∑N

i=1 e
ai·2sa .

With the predicted probability ŷ and the target one hot probability y obtained from the labels, the
backpropagation process can be initiated by computing the gradient e of cross entropy loss, E.
Cross-entropy loss is defined as E = −

∑N
i=1 yi ln(ŷi), and its partial derivative can simply be

computed as:

ei =
∂E

∂(ai · 2sa)
= ŷi − yi =

eai·2sa − yiC

C
i ∈ {1 . . . N} (1)

The main challenge of implementing Equation (1) with integer arithmetic is therefore to approximate
the term ti = eai·2sa accurately with limited precision. We address this challenge by considering 2
cases.

When sa ≤ −7, we know |ai · 2sa | < 1 because, as an 8-bit integer, ai ≤ 127. We therefore
approximate ti via its Taylor expansion:

ti = eai·2sa ≈1 + ai · 2sa +
1

2
a2i · 22s

a

(2)

When sa > −7, we rearrange the term with a base-2 approximation as follows:

ti = eai·2sa = 2(log2 e)·ai·2sa ≈ 2(47274·2
−15)·ai·2sa (3)

Denote the exponent as xi = 47274 ·2−15 ·ai ·2sa . Note that the number 47 274 = 0xB8A8 requires
16 bits to represent, while ai is a 8-bit integer. We observe empirically that sa < 0 in most cases.
Therefore, xi can be computed by shifting the value 47274ai by sa − 15 followed by truncation of
any resulting fractional bits. Subsequently, for all xi, let p be the smallest value of xi larger than
max(x) − 10. Then define x̂i = max(0, xi − p). Finally, ti = 2xi is approximated as 2x̂i , which
can be computed by 1 � x̂i. The error tensor e in (1) is computed using these effectively 12-bit
values and eventually rounded stochastically back to 8 bits before being used in back propagation.
For dataset with 1000 classes like ImageNet, stochastic rounding is necessary to avoid round bias in
ei. Despite the crude approximation in some cases, we find the accuracy of the resulting network
competitive to related works that depend on floating-point implementations.

4 Experimental Results

In this section, we first evaluate the key factors which influence the performance of trained networks
by NITI framework including the different rounding schemes for a, e, g and the bit width of g

6

0

10

20

30

40

50

60

70

80

90

100

0 30 60 90 120

Va
lid

at
io

n
A

cc
ur

ac
y(

%
)

Epoch

Pseudo stochastic rounding(best accuracy 86.14%)
Stochastic rounding(best accuracy 86.36%)
Round to nearest(best accuracy 62.79%)

Figure 2: Validation accuracy for different round-
ing schemes

0

10

20

30

40

50

60

70

80

90

100

0 30 60 90 120

Va
lid

at
io

n
A

cc
ur

ac
y(

%
)

!! = 2(best accuracy:87.57%)
!! = 3(best accuracy:86.86%)
!! = 4(best accuracy:84.85%)

!! = 1(best accuracy:86.14%)

Epoch Epoch

Figure 3: Validation Accuracy for different val-
ues of mu

90
91
92
93
94
95
96
97
98
99

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
cc

ur
ac

y(
%

)

Epoch

fp32 train
fp32 val(best accuracy 99.23%)
int8 train
int8 val(best accuracy 99.12%)

(a) MNIST (LeNet)

20

30

40

50

60

70

80

90

100

0 30 60 90 120

A
cc

ur
ac

y(
%

)

Epoch

fp32 train
fp32 val(best accuracy 91.04%)
int8 train
int8 val(best accuracy 88.24%)

(b) CIFAR10 (VGG13)

Figure 4: Training performance comparing NITI (int8) and baseline fp32 implementation.

used for parameter updating. To do so, we used CIFAR10 [10] datasets with the VGG family of
network architectures without batch normalization layer [15]. Learning from the above evaluation,
we optimized our NITI framework using the proposed rounding schemes and the best configuration
for mu parameter. Then, we compare the performance of NITI framework with its floating point
counterpart trained by SGD optimizer over MNIST [11], CIFAR10, and ImageNet [5] datasets.

4.1 Rounding Scheme

As stochastic rounding is adopted by most recent low precision training implementations [1, 16, 2],
we use it as the baseline for evaluating our pseudo stochastic rounding scheme. We also include
results from straight-forward round-to-nearest for comparison. mu is fixed as 1 for all three different
rounding schemes. Figure 2 shows the validation accuracy for training int8 VGG11 on CIFAR10
dataset with different rounding schemes. Our pseudo stochastic rounding technique works as well as
baseline stochastic rounding while both significantly outperform round-to-nearest method in terms of
final best validation accuracy.

4.2 Learning Heuristic with Different Values of mu

To find the best practice of mu in our learning heuristic, we have explored different mu to obtain
the best validation accuracy. The best validation accuracy for different mu while training VGG11
network over CIFAR10 dataset are shown in Figure 3. Generally speaking, small values of mu work
better than larger values. This is as expected because the weight update process updates with multiple
of 2sw . Large values of mu will thus more likely to diverge from the originally computed update
values using fp32 than smaller values.

7

Table 2: Validation accuracy for different models on CIFAR10

Model VGG11 int8 VGG11 fp32 VGG13 int8 VGG13 fp32 VGG16 int8 VGG16 fp32

Accuracy 87.57% 89.58% 88.24% 91.04% 87.94% 91.41%

Table 3: Comparison to related work in training AlexNet with ImageNet dataset using integers.
w(infer) w(acc) a g e loss Accuracy(%)

fp32 baseline 32 32 32 32 32 fp32 45.16
Jacob et al. [8] 8(32) 32 8(32) 32 32 fp32 45.09

Banner et al. [1] 8 32 8 32 8 fp32 45.36
WAGE [16] 2 8(32) 8(32) 8(32) 8 fp32 48.4

NITI (this work) 8 16 8 8 8 8 43.66
NITI (this work) 8 12 8 4 8 8 33.50
NITI (this work) 8 8 8 1 8 8 22.21

(32) means the low precision data format is emulated by quantizing fp32 number.

4.3 NITI Performance Results on MNIST and CIFAR10 datasets

As shown in Figure 4, we trained LeNet [12] and VGG [15] networks respectively over MNIST and
CIFAR10 datasets, using both optimized NITI framework and the baseline fp32 method. The fp32
baseline technique uses SGD with momentum 0.9 and weight decay 5× 10−4. For the case of LeNet
model, we fixed the learning rate to 0.01 and stopped the training at the end of 20th epoch. In the
case of VGG, we initiated the learning rate by 0.01 and dropped it to 0.001 at 100th epoch.

As demonstrated, NITI trains LeNet model, which is a relatively small network, with almost identical
performance comparing to the fp32 baseline. In the case of training VGG13 model over CIFAR10,
which is a tougher task, NITI was able to successfully train the network with a reasonable descend,
achieving a top-1 validation accuracy of 88.24%. Table 2 summarizes the validation accuracy of our
framework on CIFAR10 using few other networks. As observed, the moderate size VGG13 produced
the best accuracy by NITI, even when compared to the larger and more capable VGG16 network.

4.4 NITI Performance Results on ImageNet dataset

Table 3 tabulates the results of several related integer-training works on ImageNet dataset using
AlexNet. The fp32 baseline AlexNet were trained using SGD with weight decay 5 × 10−4 but
without momentum and batch normalization layer to match with the algorithm currently employed in
NITI. Initial learning rate was 0.01 and dropped to 10−3 and 10−4 at epoch 30 and 60 respectively.
Total training epochs were 78. Since the original publication of [1, 8] did not include AlexNet results,
we obtained the comparison results by using their released code.

Table 3 shows that given the large data set and the need to classify 1000 categories, additional
range and precision were needed to successfully train AlexNet on ImageNet dataset with NITI. We
explored different additional bitwidth for weight accumulation and showed that comparable results
with floating point baseline can be achieved by using 16 bits for weight accumulation.

As mentioned in Section 2, both [1] and [8] have maintained some degrees of computation using
floating point arithmetic during their training process. We believe the added dynamic range and
precision have contributed to the generally better accuracy of the resulting network than those
produced by NITI. Result of [16] further excluded cross entropy loss and last layer from quantization
to avoid performance degradation.

Being the only work that performed network training exclusively with integer arithmetic, we expect
further fine-tuning to the NITI algorithm will be able to achieve comparable results to other quantized
networks by using the same bitwidth.

5 Conclusion

In this work, we demonstrated the feasibility of integer-only end-to-end training of deep neural
networks. Our implementation does not emulate integer training using floating point; rather, it

8

entirely uses native integer operations. The innovations of this work include: our update scheme
that utilizes low precision for all intermediate values; a new stochastic rounding scheme that uses
discarded bits as a random number source, obviating the need for an additional random number
generator; and an efficient cross-entropy loss backpropagation scheme.

Our work lays the foundation for an integer-only accelerator which could greatly reduce cost,
chip area and energy consumption required for DNN training. We will also be optimizing our
implementation on GPUs and believe that improved performance over floating point on existing
GPUs using integer-only techniques is possible.

References
[1] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit training of neural

networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 5145–5153. Curran Associates, Inc., 2018.
2, 3, 7, 8

[2] Xi Chen, Xiaolin Hu, Hucheng Zhou, and Ningyi Xu. FxpNet: Training a deep convolutional neural
network in fixed-point representation. In 2017 International Joint Conference on Neural Networks (IJCNN),
pages 2494–2501. IEEE, May 2017. 3, 7

[3] Matthieu Courbariaux and Yoshua Bengio. BinaryNet: Training deep neural networks with weights and
activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016. 2, 3

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks with low
precision multiplications. arXiv preprint arXiv:1412.7024, 2014. 4

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009. 7

[6] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with limited
numerical precision. In International Conference on Machine Learning, pages 1737–1746, 2015. 2, 5

[7] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized neural
networks: Training neural networks with low precision weights and activations. The Journal of Machine
Learning Research, 18(1):6869–6898, 2017. 2

[8] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko. Quantiza-
tion and training of neural networks for efficient integer-arithmetic-only inference. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2704–2713, June 2018. 2, 3, 8

[9] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014. 4

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009. 7

[11] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 7

[12] Yann Lecun, L.D. Jackel, Leon Bottou, Corinna Cortes, J. S. Denker, Harris Drucker, I. Guyon, U.A.
Muller, Eduard Sackinger, Patrice Simard, and V. Vapnik. Learning algorithms for classification: A
comparison on handwritten digit recognition, pages 261–276. World Scientific, 1995. 8

[13] NVIDIA. Turing Architecture. https://www.nvidia.com/en-us/geforce/turing, 2019. 4
[14] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classifi-

cation using binary convolutional neural networks. In European Conference on Computer Vision, pages
525–542. Springer, 2016. 2, 3

[15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014. 7, 8

[16] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and inference with integers in deep neural
networks. arXiv preprint arXiv:1802.04680, 2018. 3, 7, 8

[17] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. DoReFa-NET: Training
low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016. 2, 3

[18] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016. 2, 3

9

https://www.nvidia.com/en-us/geforce/turing

