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ABSTRACT

In contrast to conventional vision sensors that produce images of

the entire field-of-view at a fixed frame rate, dynamic vision sensors

(DVS) are neuromorphic devices that only produce sparse events

in response to changes in light intensity local to each pixel, making

them promising technologies for use in demanding edge scenarios

where energy-efficient intelligent computations are needed. While

several early research have demonstrated promising results in per-

forming high-level machine vision tasks using vision events only,

these algorithms are often too complex for real-time deployments

in edge systems with limited processing and storage capabilities. In

this work, a novel hardware-software architecture, called REMOT,

is proposed to leverage the unique properties of DVS to perform

real-time multi-object tracking (MOT) on FPGAs. REMOT incorpo-

rates a parallel set of reconfigurable hardware attention units (AUs)

that work in tandem with a modular attention-guided software

framework running in the attached processor. Each hardware AU

autonomously adjusts its region of attention by processing each

vision event as they are produced by the DVS. Using information

aggregated by the AUs, high-level analyses are performed in soft-

ware. To demonstrate the flexibility and modularity of REMOT, a

family of MOT algorithms with different hardware-software con-

figurations and tradeoffs have been implemented on 2 different

edge reconfigurable systems. Experimental results show that RE-

MOT is capable of processing 0.43–2.22 million events per second

at 1.75–5.68 watts, making them suitable for real-time operations

while maintaining goodMOT accuracy in our target datasets. When

compared with a software-only implementation using the same

edge platforms, our HW-SW implementation results in up to 33.6

times higher event processing throughput and 25.9 times higher

power efficiency.

CCS CONCEPTS

• Computer systems organization → Real-time system archi-

tecture; Reconfigurable computing; • Computing methodolo-

gies → Tracking.
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1 INTRODUCTION

Dynamic vision sensors (DVS), also called event cameras, or silicon

retinas, are neuromorphic vision sensing devices that have been

receiving renewed interests in recent years due to their promised

energy-efficiency advantages for use in edge applications such as

intelligent transportation systems, internet-of-thing sensing and

autonomous vehicles guidance [15]. Sometimes referred as neuro-

morphic vision sensors, a DVS detects changes in exposed light

intensity and reports them asynchronously as spiking events lo-

calized to the pixels involved. This is in contrast to a conventional

image sensor where light intensity values of every pixel of a frame

are reported synchronously at a regular interval. See Fig. 1 and

Section 2 for further details.

On one hand, since events are sparse and are produced only for

times when and at locations where there are activities, DVS pro-

vide unique opportunities for energy-efficient hardware processing.

For instance, a system may choose to conserve energy by running

in low power mode until sufficient events have occurred. On the

other hand, the asynchronous sensing of DVS produces bursts of

events that require high throughput processing to avoid excessive

buffering and to maintain low processing latency (See Fig. 2). De-

pending on the activity level and the resolution of the camera, up

to millions of events per second may be produced by the sensors,

making it particularly challenging for embedded processors with

limited computing power and memory storage to process in real

time.

Further adding to this processing challenge is that the events

produced by DVS are fragmented with limited visual information

when compared to the images produced by a conventional frame-

based sensor. As a result, it remains a great challenge to perform

even common computer vision tasks such as object classification

and object tracking using only event output. Many existing event-

based vision algorithms have been relying on techniques such as

time-surface constructions to serve as an intermediate represen-

tation on which complex learning-based algorithms may be built

upon [20, 36]. Although they have achieved promising preliminary
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results, performing such complex algorithms in edge devices in real

time remains an open challenge.

In this work, a novel attention-guided hardware-software ar-

chitecture is proposed to address the computational challenges

of DVS while facilitating codesign of high-level event-based com-

puter vision tasks. The proposed architecture, called REMOT, is

designed around the concept of an attention unit (AU). In a REMOT

system, a layer of parallel AUs is implemented on the FPGA hard-

ware, which collectively process the stream of asynchronous events

from a DVS in situ as they are produced. Leveraging the inherently

localized nature of DVS events, each AU autonomously tracks a

subset of the events that fall under its region of attention (ROA).

Using the aggregated information about ROA, high-level computer

vision algorithms are developed by querying and manipulating the

operations of AUs through a structured software framework.

To demonstrate the flexibility of the REMOT architecture, a fam-

ily of attention-guided multi-object tracking (MOT) algorithms for

DVS has been implemented with a wide range of hardware and

software configurations. Furthermore, the same REMOT architec-

ture has been implemented on two different FPGA platforms to

demonstrate its portability and scalability, as well as to perform

design space exploration studies. Our results show that the pro-

posed architecture is scalable and is capable of processing 0.58 to

2.2 million events per second (Meps) while consuming 1.75 to 5.68

watts of system power. With regard to MOT accuracy, we show

that our proposed attention-guided MOT algorithms can achieve

43.1 % to 73.2 % in terms of HOTA metric across a range of datasets.

To the best of our knowledge, this is the first work that utilizes

hardware-software codesign strategies to support high-level event-

based computer vision tasks implemented efficiently on FPGAs. To

this end, we consider the main contributions of this work as:

• We proposed a first-of-its-kind attention-guided hardware-

software architecture that can effectively support real-time

FPGA implementation of event-based computer vision tasks

in edge applications;

• We demonstrated the flexibility, scalability, and real-time

performance of the proposed architecture by performing

design space exploration for implementations on two FPGA-

based edge platforms;

• We proposed a family of real-time event-based attention-

guided multi-object tracking algorithms that run on our

proposed architecture and demonstrated their efficacy using

a set of real-world traffic monitoring data.

In the next section, background and related work on DVS and

multi-object tracking will first be discussed. The hardware-software

architecture and our attention-guided MOT algorithms will be

discussed in Section 3. An extensive evaluation of our proposed

hardware-software system will be shown in Section 4. Limitations

of our current system will be discussed in Section 5 and we will

conclude in Section 6.

2 BACKGROUND & RELATEDWORK

2.1 Dynamic Vision Sensors

Dynamic Vision Sensors only report local brightness change asyn-

chronously for each pixel. Whenever the change in log intensity

of a pixel is higher than a predefined threshold, it emits an event,
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Figure 1: Comparing working principles of DVS cameras

(middle) and conventional frame-based cameras (bottom).

Event is encoded with its pixel location (𝑥,𝑦), polarity 𝑝

(shown as magenta and cyan dots), and is typically times-

tamped at 1µs intervals, 𝑡 . (top right) Accumulating events

forms a 2-D representation in the original 𝑥-𝑦 coordinate.

Figure 2: The number of events produced by a DVS camera

depends on the amount of dynamic activities in the scene.

or spike, which is usually encapsulated in an address event repre-

sentation (AER) format for downstream processing [15]. A typical

event in AER can be written as [𝑥,𝑦, 𝑝, 𝑡], where 𝑥,𝑦 is the location

of the event, 𝑝 is the polarity of brightness change in ±1, and 𝑡 is
the timestamp generated by the sensor.

Fig. 1 illustrates the working principle of a dynamic event sensor

(DVS) by showing outputs of a DVS camera alongside a conven-

tional camera that is monitoring a hypothetical traffic intersection.

The figure shows the period before and after the stopped vehicle

resumes motion upon traffic light turning into green. At the lower

half of the figure, 5 frames from the conventional camera are shown,

which capture the scene at a regular interval, e.g. 25ms. The first

2 frames capture identical and redundant information when the

vehicle is idle. After frame 3, when the traffic light turns green, the

frame-based camera continues to capture the motion of the car at

disjoint locations. On the other hand, a DVS reports changes in light

intensity asynchronously as spiking events shown as magenta and

cyan dots in the middle of Fig. 1. Conversely, no event is generated

when there is no change in light intensity, such as when the vehicle

is idle, and when the traffic lights stay unchanged. Once the car

starts moving, a very dense cloud of events can be observed that

closely tracks the movement of the vehicle.



0 1 2 3 4 5 6 7 8 9
Number of events corresponding to a timestamp

10−7

10−4

10−1

102

Pe
rc

en
ta

ge
 %

9.0e+01
8.7e+00

1.4e+00
2.6e-01

5.0e-02
3.3e-03

5.2e-05
3.1e-061.2e-06

2.2e-07

Figure 3: Event statistics of inbound traffic dataset.

Due to its asynchronous behavior, a variable data rate can be

expected from DVS depending on the activity level of the scene.

Fig. 2 shows the rate of events produced over time in a traffic scene.

As the cars move towards the camera, the relative speed in the view

increases, which results in higher events rates. Common industrial

DVS timestamps events in 1 µs resolution. However, in some ac-

tive dynamic scenes, more than one events might share a same

timestamp value. Fig. 3 shows the statistics in our traffic dataset.

The special column labeled as “0” corresponds to the percentage of

time when no event is generated, which captures its sparsity in the

time dimension. In this particular example, the DVS was idle 90 %

of the time. Furthermore, among all the timestamps with events,

83 % contains only 1 event. On average, the data rate of our current

dataset ranges from 0.22 to 0.3 million events per second (Meps).

This rate ultimately determines the minimum average processing

throughput our proposed hardware-software system must achieve

to avoid dropping of events.

In this work, we employed an advanced Dynamic and Active

Pixel Vision Sensor (DAVIS) camera [7] that implements both a

dynamic vision sensor and a conventional frame-based active pixel

sensor (APS) on the same pixel array. Since the two sensors are

integrated at pixel level, no image registration is needed between

the events and frame output. We took advantage of this feature to

produce ground truth bounding boxes in our dataset.

2.2 Hardware Processing of DVS Output

The asynchronous and sparse natures of DVS output brings both

opportunities and challenges to processing them efficiently in hard-

ware. Table 1 shows a list of previous works that demonstrated

efficient hardware processing of DVS output. Depending on the

operating principle of a work’s main algorithm, two different per-

formance measurements have typically been used in the literature

regarding DVS processing in hardware. Designs with their main

algorithms operating on raw event input from the DVS usually

emphasize their event processing throughput as measured in mil-

lion events per second (Meps). These works are marked with a

check mark in the table under the “Per-event processing” column.

On the other hand, a group of event-based hardware algorithms

performed computer vision tasks using frame-like intermediate

representations such as by aggregating events over a time window.

In these cases, the literature typically reports performance in terms

of frames per second (fps).

Owing to the neuromorphic nature of DVS, a number of works

have explored the use of spiking neural networks (SNN) [18] to per-

form dynamic vision tasks including object classification [10, 25],

and object tracking [34, 35]. Subsequently, from a hardware im-

plementation perspective, both dedicated SNN chip [35], or gen-

eral purpose SNN accelerators including Intel Loihi [11] and IBM

TrueNorth [27] have been used to accelerate the corresponding

SNN inference task, resulting in highly energy-efficient processing

in general.

At the same time, another school of work approached the chal-

lenge of performing event-based vision tasks by developing cus-

tom architecture and algorithms that operate on the DVS events

natively. For instance, [23] developed a real-time object tracking

system based on center-of-mass computation using FPGA for object

tracking. In [37], a hand-gesture recognition system with real-time

FPGA implementation by using a hierarchy of time-surface was

proposed. In [33], object classification and detection was performed

by mapping and categorizing the input events using PCA-RECT

transform on FPGA.

Recently, leveraging their extraordinary success in processing

conventional frame-based images, deep learning methods that uti-

lize convolutional neural networks (CNNs) have also been exploited

to process DVS output for various dynamic vision tasks [24, 30, 31].

Unfortunately, typical CNN accelerators are designed to operate

with dense tensors and thus cannot fully take advantage of the

sparseness of DVS output to improve power efficiency. To address

that, some progress has been made in accelerating CNN with sparse

feature maps, making them suitable for inference on DVS histogram

output [2].

REMOT follows the line of work of operating directly on the

event output from a DVS by introducing a customized HW/SW

architecture to perform multi-object tracking. However, we fur-

ther expand its flexibility by allowing it to be reconfigurable and

programmable through dedicated codesign strategies.

2.3 Multi-object Tracking Using DVS

Multi-object tracking [32] is a challenging computer vision task that

tracks multiple objects in a dynamic scene. Apart from detecting

an object in a scene, it also requires an algorithm to assign a unique

index to each independent object and track its trajectory. There

has been a wide variety of MOT algorithms proposed for frame-

based camera, with “tracking by detection” being the mainstream [3,

4, 6]. It is mainly composed of two steps: (i) apply a detector to

detect objects in each frame; (ii) perform association on the detected

objects across frames.

Following a similar approach, a number of event-based object

tracking algorithms have been proposed. For instance, in [21], the

authors demonstrated effective tracking using a correlation filter

on top of a CNN structure. In the work of EBBIOT [1], a vehicle

tracking system based on event sensors was demonstrated. Using

an adaptive time surface formulation of events, Chen et al. [8] have

demonstrated multiple object tracking in a controlled environment.

Leveraging recent advent in machine learning, an offline-online

learning approach was proposed in [19] to perform event-based

object tracking with comparable performance to frame-based algo-

rithms. In a recent work of EKLT [16], the use of simultaneous event

and frame-based input to perform feature tracking was proposed.

While the above works have achieved good object tracking per-

formance, their complex designs were not optimized for real-time



Table 1: Previous Hardware Deployments of Event-based Vision Tasks using Dynamic Vision Sensors.

Hardware Platform Task Main Algorithm

Per-Event

Processing
Performance System Power

Dynamic/Chip

Power

[34] Loihi[11] Object Tracking SNN ✓ N/A N/A N/A

[38] FPGA+TrueNorth[27] Object Tracking, Classification Event-based Tracker + SNN ✗ 15fps N/A 0.55W

[35] Neuromorphic Chips Object Recognition, Tracking SNN ✓ 3Meps N/A 0.4W

[22, 23] FPGA Object Tracking Center of Mass Calculation ✓ 120-140ns 10W N/A

[37] FPGA Gesture Recognition Hierarchiy Of Time Surface ✓ 0.16-2Meps 1.6W 0.077W

[30] FPGA Pedestrian Detection BNN ✗ 130fps N/A N/A

[33] FPGA Object Detection PCA, kd-tree, SVM ✓ 550ns 3W 0.37W

[24] FPGA Object Classification CNN ✗ 160fps 1W 0.27W

[31] GPU Object Detection CNN ✗ 25fps N/A N/A

REMOT FPGA Object Tracking Attention-Guided MOT ✓ 0.43-2.2Meps 1.75-5.68W N/A

implementations. For that, the authors of E-MS [5] demonstrated

an effective real-time event-based multi-object tracking by per-

forming mean-shift clustering on the incoming events as they were

produced. Subsequently, in [23], the authors demonstrated a low-

latency event-based object tracker by performing inline center-of-

mass computation using FPGA.

Our proposed REMOT framework similarly performs multi-

object tracking directly on the dynamic vision events as they are

produced. Taking advantage of the high temporal resolution and

spatial sparsity of DVS, REMOT identifies and tracks multiple ob-

jects simultaneously using a layer of AUs. Each AU is an inde-

pendent tracker that only pays attention to a small region that is

updated in a per-event manner (Section 3). As an object moves,

the attention region follows its motion based on the corresponding

events that are produced, thereby tracking the moving object. Dur-

ing the lifetime of an AU, it will be assigned a unique global index as

the tracking ID. Therefore, no object association in the traditional

MOT sense is needed. Instead, supervisory functions are needed

to ensure that each AU is indeed tracking useful objects. These

high-level decisions are made based on the status of the AUs and

may operate in millisecond scale comparable to a frame speed. In

this way, a hierarchy of vision system is established with different

processing rates on different levels.

3 REMOT ARCHITECTURE & ALGORITHMS

REMOT defines a hardware-software architecture and its associated

operations that allow real-time event-based multi-object tracking

algorithms to be developed (Fig. 4). The design of REMOT is based

on the notion of an attention unit (AU). An AU is an autonomous

entity that observes events from a DVS as they are produced. An

AU maintains a region of attention (ROA) that defines the area in

the imaging field where this AU is currently paying attention to.

An implementation of REMOT will typically include a large set of

independent AUs, which collectively attend to different parts of the

imaging field where there are interesting events. Furthermore, a

high-level controller oversees the operations of the entire set of AUs,

and makes group decisions based on the state of each individual

AU. It is by carefully manipulating the actions of the AUs that a

family of attention-guided multi-object algorithms can be defined.

As shown in Fig. 4, the set of AUs can be implemented naturally

as independent units running in hardware so they can process every

event at line rate as they are produced. On the other hand, the high-

level controller can naturally be implemented as software running

on a microprocessor. While we have employed this natural mapping

in this work, future implementations may choose to implement part

of the controller logic in hardware to improve system performance.

In its most basic form, each AU supports only a small set of

predefined actions:

• Expand — An AU may choose to expand its ROA when it

observes an event that it is interested in. In that case, the AU

captures the event and adjusts its ROA accordingly. Part of

the algorithm designer’s job is to define the criteria under

which an AU is interested in an event (top left, Fig. 4).

• Shrink — An AU may choose to shrink its ROA as events age

and no longer require attention. In that case, the AU may

forget the event according to criteria set up by the algorithm

(bottom left, Fig. 4).

• Merge —An algorithm may choose to merge two AUs during

run time as more information about each AU is aggregated.

When 2 AU merges, a new AU is formed with a combined

ROA that is the union of the two original ROAs. Since merge

requires information about more than one AU, the decision

to merge is initiated by the controller that oversees all AUs

(top right, Fig. 4).

• Split — An algorithm may decide that an AU should split

into multiple AUs depending on algorithm-specific criteria

(Fig. 4). When an AU splits, two new AUs are formed with

each of them inheriting a subset of the original region of

attention (bottom right, Fig. 4).

In addition, REMOT also defines the spawn and delete operations

for the AU controller. An AU is spawned when no existing AU is

interested in a new coming event. The ROA of the new AU will

center around the new event. As for delete, if the ROA of an AU

has shrunk to a size less than a threshold or an AU being idle

for a period of time, the controller may decide to delete the AU.

In software implementations, an unlimited number of AU can be

spawned. However, in hardware implementations, the number of

physical AU is fixed and limits the maximum number of AU that

can be spawned. Consequently, it is possible that events might be

dropped due to lack of AU and affect the overall MOT accuracy.

3.1 Multi-object Tracking with REMOT

Asmentioned in Section 2.3, the task of multi-object tracking (MOT)

in REMOT can now be recast into the problem of deriving algo-

rithms to guide the AUs into correctly paying attention to and

thereby tracking objects of interest. This can be accomplished by

designing appropriate algorithms for each of the AU actions above.
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3.1.1 Expand/Shrink Algorithms. Our current implementation of

expand and shrink actions are centered around the use of an atten-

tion map (AMAP) in each AU that records its current ROA. Each AU

also contains an Active Event FIFO to record its recently interested

events. When a new event arrives within the ROA of an AU (i.e.,

AMAP[𝑥,𝑦] > 0), the 𝑑 × 𝑑 area of the AMAP centered at [𝑥,𝑦] is
incremented by 1 and the event is pushed into the FIFO. When an

event ages and is popped out from the FIFO, its corresponding 𝑑 ×𝑑
area will be decremented by 1, shrinking the AMAP accordingly.

3.1.2 Merging Algorithms. We propose two merging algorithms,

the distance-based algorithm and the ratio-based algorithm. When

two AUs are merged, the tracking events from both AUs are joined

and the attention regions are superposed. The bounding box of the

merged AU is calculated based on the blended events set and the

tracking ID of the merged AU is the ID of the earliest spawned AU.

Distance-based merging algorithm uses the Hausdorff distance

to determine whether two neighboring AUs should be merged

into a single AU. If the Hausdorff distance between two sets of

active events from two AUs is less than a threshold value, a merge

operation will be carried out. The Hausdorff distance is effective to

evaluate the distance between two sets of points, defined as:

𝐻 (𝐴, 𝐵) = max(ℎ(𝐴, 𝐵), ℎ(𝐵,𝐴))
ℎ(𝐴, 𝐵) = max

𝑎∈𝐴
min

𝑏∈𝐵
∥𝑎 − 𝑏∥2 (1)

where ∥ · ∥ denotes the L2 norm and 𝐴 and 𝐵 are two set of points.

Ratio-based merging algorithm decides whether to merge two

neighboring AUs based on the ratio of Interaction over Minimum

(IoM). If the IoM ratio is larger than a threshold value, the neigh-

boring AUs will be combined. The IoM ratio is defined as the over-

lapping area over the minimum area of two neighboring AUs.

3.1.3 Splitting Algorithms. The splitting operation leverages dif-

ferent cluster algorithms to determine whether the internal events

develop into different separated groups. In REMOT, we employ

two splitting algorithms to partition AUs: density-based splitting

algorithm and hierarchy-based splitting algorithm. Each attention

region of the separated AU is reconstructed using the new clustered

events. A new tracking ID is assigned to the new spawned AUs.

Density-based splitting algorithm uses the density-based spatial

clustering of applications with noise (DBSCAN) algorithm [14].

DBSCAN describes the spatial density of a location by the number

of points in a given neighborhood radius. The points in high-density

regions are clustered together. If the active events of one AU have

at least two clusters, the AU will be split.

Hierarchy-based splitting algorithm utilizes the Hierarchical Ag-

glomerative Clustering (HAC) algorithm [29], which builds a hierar-

chy of clusters to split events. HAC aggregates events from clusters,

starting from one event per cluster. Two nearest clusters are merged

into one at each iteration, until all the events are amalgamated into

one cluster, forming a hierarchy of clusters. If the last two clusters

are too far apart to merge, the events will be split.

3.2 Hardware Designs

3.2.1 Overall Hardware Architecture. As shown in Fig. 4, the pro-

posed hardware architecture of REMOT takes event stream as input.

Each event will be broadcast to all hardware AUs to check whether

the event lies within their attention region. The AU that considers

the new event interested will push the event into its Active Events

FIFO and update its attention map. If the Active Events FIFO is full,

the oldest event will be popped out and the corresponding attention

region will be shrunk. In addition, a global input event FIFO is used

to buffer events in case that a burst of events arrive at the same

time. The size of this FIFO is set to be larger than the peak event

rates (in 1 millisecond interval) as the transmission latency of the

DVS is usually within 1ms. The hardware also provides interfaces

that allow the high-level software controller on PS to read and

manipulate the status of AUs, e.g. the attention map and Active

Event FIFO, to enable merge and split operations.

The proposed attention-guided tracking algorithm allows differ-

ent hardware implementations to achieve different design tradeoffs

between accuracy, throughput, resource, and power consumption.

Here in REMOT, we introduce three implementations: Full-amap,

Hash-amap, and Fifo-only.

3.2.2 Full-amap. The Full-amap is a straightforward implemen-

tation similar to the software implementation without additional

hardware optimization. Each AU is composed of a𝑊 × 𝐻 AMAP

and an Active Event FIFO, where𝑊 and 𝐻 is the width and height

of the camera. The hardware expand and shrink behaviors follow

the same procedures as the software implementation described in

Section 3.1.1. Block RAM (BRAM) is used to implement AMAP on

FPGA, resulting in around 𝑑 × 𝑑 cycles to update for every expand

or shrink operation.

The Full-amap is considered as a costly hardware baseline with-

out taking advantage of the inherent spatial sparsity of the DVS.
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Figure 5: Three different hardware implementations of an attention unit.
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Figure 6: Hashing diagram of the attention map in Hash-

amap implementation.

The BRAM usage for an AU in Full-amap can be estimated as:

𝐵Full-amap = ⌈(𝑊 × 𝐻 × 16 + 𝐷𝐹𝐼𝐹𝑂 × 64)/16Kb⌉ (2)

where 𝐷𝐹𝐼𝐹𝑂 is the depth of the 64 bits Active Event FIFO and

attention map uses 16 bits precision. In addition, the throughput

of the Full-amap implementation is mainly determined by expand

and shrink size 𝑑 , which can be estimated using:

𝑇Full-amap = 𝑓 𝑟𝑒𝑞/(2(𝑑2 +𝐶)) (3)

where 𝑓 𝑟𝑒𝑞 is the clock frequency of the Programmable Logic (PL)

and 𝐶 is a constant overhead including the pipeline latency.

3.2.3 Hash-amap. As mentioned above, the inherent spatial spar-

sity in DVS brings great opportunities for hardware optimization.

Thus, hash table becomes a good candidate to implement a sparse

attention map in AU. By only storing non-zero attention region in a

hash table, large on-chip memory is saved for each AU. In this way,

more AUs can be deployed under the same resource constraints.

Fig 6 shows the diagram of the hashing scheme. For each location

[𝑥,𝑦], the hash key can be generated using:

𝑘𝑒𝑦 = 𝑦 ×𝑊 + 𝑥 + 1 (4)

where W is the width of the camera screen. This key generation

function calculates the flattened 1D array index of [𝑥,𝑦] in the

original 2D𝑊 × 𝐻 space. It ensures that a unique hash key can

be assigned to each location in the𝑊 × 𝐻 space. Other mapping

functions that can guarantee this uniqueness is also acceptable. In

addition, we choose the binary multiplicative hashing function [13]

to obtain the index of the hash table entry to store a key-value pair.

For a hash table with 2
𝑙
entries and 𝑤 bits hash key, the hashing

function can be described as:

𝑖𝑑𝑥 = (𝑎 × 𝑘𝑒𝑦) [𝑤 − 1 : 𝑤 − 𝑙] (5)

where 𝑎 is a𝑤 bits constant number and [𝑤 − 1 : 𝑤 − 𝑙] refers to
𝑤 − 𝑙 to𝑤 − 1 bits of the 2𝑤 bits multiplication result. In this way,

we obtain an 𝑙 bits index to store a key-value pair in the hash table.

For a sparse attention map in Fig 6, the hash table only stores the

non-zero locations, which also corresponds to the ROA of the AU.

When a new event comes, it will query the hash table using Eq.4

and Eq.5. If finding the matched key, the event will be considered

interested and 𝑑 × 𝑑 locations will be updated similar to the Full-

amap implementation.

Using hash table to store the sparse attention map also brings

in the problem of hash collision, which means that two different

non-zero locations might be mapped into the same hash table entry.

To simplify the design and achieve a higher throughput, we use

chaining as the collision handling strategy by allocating multiple

slots for each hash table entry. If a collision happens, the new key-

value pair goes to the next available slot. Otherwise, this key-value

pair will simply be dropped.

The throughput of the Hash-amap implementation is similar to

the Full-amap in Eq.3. However, the BRAM consumption can be

largely reduced by using hash table, which can be written as:

𝐵Hash-amap = ⌈((𝑤 + 16) × 2
𝑙 × 𝑠 + 𝐷𝐹𝐼𝐹𝑂 × 64)/16Kb⌉ (6)

where s is the number of slots in one hash table entry. Similarly,

the precisions of the attention map and FIFO are 16 and 64 bits. The

hash key precision𝑤 is set to 18 in our implementation.

3.2.4 Fifo-only. Both Full-amap and Hash-amap implementa-

tion keep a record of the attention map to determine whether the

new coming event is interested. They achieve constant query time

but spend around 𝑑2 cycles to update the ROA. The Fifo-only

implementation reformulates the attention-based algorithm in a

different way and leads to a different design tradeoff.

The Fifo-only implementation compares the location of a new

coming event with all the existing events in the Active Event FIFO.

If its location lies within the expanding region of any active event,

the new event will be considered interested and be pushed into the

Active Event FIFO. The algorithm can be formulated as:

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑 = ∃ 𝑒 ∈ 𝐹, 𝑠 .𝑡 .|𝑒𝑥 − 𝑥 | ≤ 𝑑 & |𝑒𝑦 − 𝑦 | ≤ 𝑑 (7)

where 𝐹 is the Active Event FIFO. Different from the attention-map-

based methods, the complexity of query is O(𝑛) and the complexity

of updating FIFO is O(1) for Fifo-only, where 𝑛 refers to the depth

of the Active Event FIFO. Therefore, the throughput of Fifo-only is

bounded by how fast it can traverse the entire FIFO. This generally



means that the conventional hardware implementation of a FIFO

with one push/pop operation per-cycle is incapable for this design.

For example, if the FIFO depth is 1024, it takes around 1024 cycles

to determine whether a new event is interested or not. Assuming

the PL fabric running at 100MHz, the throughput will be less than

0.1 Meps, which is slower than the real-time requirement. Thus,

as depicted in Fig. 5, we can achieve parallel access of the FIFO

by partitioning. Given a target throughput 𝑇 , we can estimate the

partition factor of the FIFO and the overall BRAM consumption

using:

𝑃 = ⌈𝐷𝐹𝐼𝐹𝑂/(𝑇 /𝑓 𝑟𝑒𝑞)⌉
𝐵Fifo-only = 𝑃 × ⌈64 × 𝐷𝐹𝐼𝐹𝑂/(𝑃 × 16Kb)⌉ (8)

which leads to a different throughput-resources tradeoff compared

to the attention-map-based implementations.

4 RESULTS

4.1 Datasets and Evaluation Metrics

Weevaluated the proposed algorithms on three event camera datasets.

The first one is a 10 s segment from the open-source data shapes_6dof

[28], and the other two datasets, inbound traffic, and outbound traf-

fic, are captured by ourselves that show inbound and outbound

traffic respectively. The data were captured using a DAVIS 346

camera [7] that produced simultaneous events and image frames.

Table 3 shows the average and peak event rates for the datasets. The

ground truth bounding boxes for object tracking were manually

labeled using the frame-based images.

To evaluate tracking performance, we use HOTA (Higher Order

Tracking Accuracy) [26], which is the default metric for multi-

object tracking in many frame-based object tracking benchmarks

includingMOTChallengeMOT20 [12] and KITTIMOTS [17]. HOTA

is a unified metric that evaluates both detection and association

accuracy of an algorithm as follows.

Detection accuracy measures the alignment between the pre-

dicted bounding boxes and the ground-truth bounding boxes:

DetA =

∫
0<𝛼≤1

DetA𝛼 =

∫
0<𝛼≤1

|TP𝛼 |
|TP𝛼 | + |FP𝛼 | + |FN𝛼 | (9)

where |TP𝛼 |, |FP𝛼 | and |FN𝛼 | refer to the numbers of true positives,

false positives, and false negatives, with Intersection over Union

(IoU) between predicted and ground-truth bounding boxes larger

than the minimum match threshold 𝛼 .

Association accuracy measures alignment between predicted

track and the ground-truth track:

AssA =

∫
0<𝛼≤1

AssA𝛼 =
1

|TP𝛼 |
∑︁
𝑐∈TP

|TPA𝑐
𝛼 |

|TPA𝑐
𝛼 | + |FPA𝑐

𝛼 | + |FNA𝑐
𝛼 | (10)

where 𝑐 is a given true positive, 𝛼 is minimum IoU, and |TPAc

𝛼 |,
|FNAc

𝛼 |, |FPAc

𝛼 | correspond to the size of true positive association,

false negative association and false positive association.

HOTA unites detection accuracy and association accuracy:

HOTA =

∫
0<𝛼≤1

HOTA𝛼 =

∫
0<𝛼≤1

√︁
DetA𝛼 · AssA𝛼 (11)

4.2 Hardware Implementation Results

4.2.1 Hardware Experiment setting. In this section, we present the

results on the hardware implementation of REMOT. A series of

HW/SW experiments were carried out to demonstrate the multiple

design tradeoffs in accuracy, throughput, resources and power. To

demonstrate the flexibility and scalability of REMOT, we imple-

mented multiple REMOT configurations on two embedded FPGA

platforms: PYNQ-Z2 (Zynq 7Z020) and Ultra96 (Zynq ZU3EG). In

addition, a software-only baseline of the proposed algorithm was

implemented on the processor of Ultra96 (Arm CORTEX-A53) for

performance comparison.

4.2.2 Performance comparison between FPGA and CPU. Fig. 7b

shows a general picture of the different performance models of CPU

and FPGA for low-level event processing (expand and shrink). Both

FPGA and CPU results were measured on Ultra96. The Fifo-only

implementation was used for FPGA results and the throughput was

measured on the development board after synthesis, place and route

with different number of AUs deployed. According to Fig. 7b, the

parallel hardware AUs on FPGA achieve a comparable performance

across different AU numbers while the processing throughput of

CPU decreases dramatically as the number of AU increases. Even

though the throughput of FPGA does drop slightly owing to lower

PL clock frequencies as the resource utilization increases for more

AUs, the speed-up continues to grow and achieves up to 34×. The
results demonstrate our hardware architecture in REMOT can lead

to a scalable performance in the low-level parallel event processing.

In terms of power, the CPU implementation has a relatively static

power consumption of 4.64Wwhile the FPGA implementation with

13 AUs runs at 5.68W, resulting in 25.9× improvement in terms of

power efficiency (Meps / W).

At the same time, more AUs means more capabilities to poten-

tially track objects at the same time. Fig. 7a shows the tracking

results on different datasets versus the maximum AU allowed. It

points out the fact that if the CPU-only implementation wants to

achieve higher tracking accuracy by using more AUs, it cannot

meet the real-time throughput requirement (> 0.3Meps) for event

processing.

Generally, for a given dataset, the accuracy will saturate at some

points depending on how many objects would appear at the same

time. In our case, 10 AUs would be sufficient for all three datasets.

However, this result might not genuinely reflect the situation for

other scenarios, e.g. a heavier traffic scene. The purpose of Fig. 7a

is to illustate the important accuracy-resource tradeoff affected by

the maximum number of AUs allowed. If more AU can be deployed

under given resource constraints, a higher multi-object tracking

accuracy can be expected to some extent.

4.2.3 Tradeoffs in different Hardware Implementations. In this sec-

tion, we present some detailed discussions on implementation re-

sults with different design tradeoffs.

Tradeoffs in throughput. For the attention-map-based implemen-

tations (Full-amap and Hash-amap), throughput is bounded by

sequentially updating attention region. Fig. 7d demonstrates this

accuracy-throughput tradeoff with different expand and shrink

size 𝑑 shown in Fig. 4. The results were obtained based on the

shapes_6dof dataset, while the throughput is calculated using Eq. 3

assuming a 300MHz clock frequency. As shown in Fig. 7d, the op-

timal value of 𝑑 is 11 for the shapes_6dof dataset, leading to 1.04

Meps throughput.
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Figure 7: Hardware Implementation. (a) shows MOT accuracy with a different maximum number of AUs on three datasets; (b)

compares performances between CPU and FPGA; (c) presents final performances for the three implementations on Ultra96 and

PYNQ-Z2; (d) captures throughput-accuracy tradeoff for Hash-amap and Full-amap implementations; (e) shows throughput-

resource tradeoff for Fifo-only; (f) illustrates accuracy degradation for different hash-table configurations.

The Fifo-only implementation has a different throughput trade-

off comparedwith attention-map-based design, which is determined

by how fast it can traverse through the entire FIFO as described in

Eq. 8. The throughput grows linearly with the FIFO partition factor

while the BRAM usage for the FIFO also increases. Fig. 7e shows

the theoretical throughput and the maximum number of AUs that

can be deployed on Ultra96 with respect to different FIFO partition

factors. The depth of the Active Event FIFO is set to 1024 in the

experiments. As marked by the dashed line in Fig. 7e, if the partition

factor is 8, we can embed around 12 AUs with 2 Meps throughput,

closed to the final implementation result shown in Fig. 7c.

Tradeoff in Hash-amap design. Another accuracy-resource trade-

off exists in Hash-amap implementation. As discussed in Section 3,

the Hash-amap leverages the intrinsic sparsity in attention-map

to save on-chip memory consumption. However, it also brings in a

new problem of hash collision that can potentially flaw the atten-

tion map. Fig. 7f shows the accuracy degradation for different hash

table configurations on shapes_6dof . The accuracy would hardly

drop when the number of entries exceeds 4096 compared to a full

attention map. The results also show that using both more slots

and hash table entries can benefit the accuracy. However, since

the total hash table size is the number of entries times the number

of slots per entry, increasing the entries number seems to bring

more marginal benefits as shown in Fig. 7f. However, this is an

empirical conclusion that only reflects the overall effects of our

hashing function, data accessing pattern, and collision handling

strategy. In the final implementations with a conservative configu-

ration (8192 × 1), the Hash-amap enables around 4× more AUs to

be deployed compared to the Full-amap as shown in Fig. 7c. In this

way, more potential objects can be tracked with more hardware

AUs deployed.

4.2.4 Scalability and Power Consumption. In the final deployment,

we devise three different implementations on both PYNQ-Z2 and

Ultra96 and measure their throughput and power consumption.

The power was measured using a power source connected to the

development board, which reflects the total power consumption

for the system. Specifically, we set the voltage of the power source

and observed the stable current value of the power source in a

continuous input test. The internal AU configurations are iden-

tical for Ultra96 and PYNQ-Z2, leaving the available hardware

resources to determine the maximum number of AUs. The final

hardware AU quantities as well as the corresponding throughput

and power consumption are shown in Fig. 7c. Table 2 lists the de-

tailed resource utilization of different implementations. In general,

our design shows high scalability. The Ultra96 development board

has 54% more on-chip BRAM compared to PYNQ-Z2, resulting in

around 60% increase in the maximum number of AUs deployed.

The throughput on Ultra96 is also higher than the corresponding

version on PYNQ-Z2 for a higher clock frequency after place and

route.



Table 2: Resource utilization when maximum number of

hardware AUs are instantiated.

DSP LUTs BRAM FF Freq(MHz)

PYNQ-Z2 220 53200 280 106400

Full-amap 1% 20% 77% 14% 125

Hash-amap 5% 28% 80% 20% 125

Fifo-only 0% 20% 96% 13% 125

Ultra96 360 70560 432 141120

Full-amap 1% 14% 96% 9% 300

Hash-amap 5% 26% 87% 5% 300

Fifo-only 0% 22% 99% 14% 250

(a) shapes_6dof

(b) inbound traffic

(c) outbound traffic

Figure 8: Visualization of tracking results. The left-hand side

of each figure shows the events accumulated from the 40ms
prior to the corresponding image frame and tracking results

from REMOT. The right-hand side shows the corresponding

image frame with the ground truth bounding boxes.

4.3 MOT Performance

4.3.1 Multi-Object Tracking Accuracy. Table 3 summarizes the

tracking accuracy of REMOT as measured by the HOTA metrics

while Fig. 8 shows the visualization of tracking results. Specifi-

cally, the results were produced under the distance-based merging

algorithm and DBSCAN splitting algorithm. Overall, REMOT per-

formed best with the relatively simple shapes_6dof benchmark

followed by the more complex real-world benchmark of inbound

traffic and outbound traffic. Real-world challenges such as the pres-

ence of shadows, which the AUs regard as part of a vehicle but the

human-produced ground truth labels did not, caused mismatched

bounding box calculations. Furthermore, vehicles movements, such

as when individual cars begin to merge in outbound traffic or when

Table 3: Tracking results and data rates on different datasets

shapes_6dof

inbound

traffic

outbound

traffic

Detection Accuracy (%) 70.4 50.9 39.0

Association Accuracy (%) 76.3 58.0 47.8

HOTA (%) 73.2 54.3 43.1

Average Event Rate (Meps) 0.30 0.26 0.22

Peak Event Rate (Meps) 2.16 1.03 0.84

Table 4: Comparison results with other methods on the

shapes_6dof dataset.

Metrics AP (%) AR (%) HOTA (%)

[5] E-MS 61.2 66.8 40.2

[9] ETD 80.9 99.8 N.A.

[8] RMRNet 86.6 98.0 N.A.

REMOT 76.5 94.3 73.2

cars emerged from afar in inbound traffic, challenges our current

simplistic AU merge, split, and expand actions.

We further compared the performance of REMOT against 3 re-

lated works that addressed similar event-based MOT challenges

and have reported results using shapes_6dof , as shown in Table 4.

Without access to the source code of ETD [9] and RMRNet [8], we

instead evaluated REMOT using the specialized metrics employed

in these 2 papers, namely, AP (average precision, also known as

average overlap rate in [8]) and AR (average robustness) with our

segment from shapes_6dof . The HOTA value for E-MS [5] was pro-

duced by evaluating their released source code using our segment

from shapes_6dof . Minimum enclosing bounding boxes were cre-

ated based on the segmented clusters of events per frame and were

labeled with the corresponding segment color for association. The

AR and AP values for E-MS were reproduced from [8]. Results show

that REMOT performs better than E-MS across all 3 metrics, but is

shy of achieving the same performance as ETD and RMRNet in the

AP and AR metrics. Nevertheless, REMOT was able to achieve such

accuracy in real time while consuming only a fraction of power

using low-end FPGA-based HW/SW systems.

4.3.2 Flexibility of the high-level merge/split algorithms. As de-

scribed in Section 3, REMOT decouples the low-level event pro-

cessing from the high-level vision decision in a hierarchical way.

The high-level merge/split algorithms implemented on the process-

ing system can be extremely flexible and modular. For example,

Fig. 9 shows the decomposed accuracies of shapes_6dof dataset

under two different split algorithms. The solid lines are the accu-

racies using the DBSCAN splitting algorithm, and the dash lines

correspond to the HAC splitting algorithm, both combined with the

distance-based merging algorithm. According to Fig. 9, the software

under different configurations can exhibit different performances

in detection and association.

Fig. 10 also demonstrates the performance of the two merging

algorithms, distance-based and ratio-based, assuming the same DB-

SCAN splitting algorithm. The color of Fig. 10 indicates the HOTA

value. The y-axes of the figures are the expanding and shrinking

size 𝑑 . The x-axis of Fig. 10a is the maximum distance to merge
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Figure 9: Decomposed accuracies using two splitting algo-

rithms of DBSCAN and HAC, with the changes of minimum

IoU between tracked and ground-truth bounding boxes.

neighboring AUs, and the x-axis of the Fig. 10b is the minimum

IoM ratio to merge AUs. Since the size 𝑑 is a hardened hardware

parameter, Fig. 10 brings in additional variability on the software

side to explore a better overall tracking performance.

In addition, the decoupled high-level vision algorithms imple-

mented on the PS can process at a lower rate than conventional

frame-based vision algorithms. Normally, frame-based tracking al-

gorithm would process each frame one after another. The real-time

requirement for these algorithms is that the processing frame rate

should be higher than the frame rate of the camera, e.g. 25 fps.

However, in our REMOT, since the low-level hardware AU is con-

tinuously tracking the dynamic scene in real time, the high-level

merge/split software does not necessarily need to operate at a fixed

frame rate similar to a frame-based camera. Fig. 11a shows the av-

erage latencies of merge and split operations, measured on Ultra96

using the shapes_6dof dataset. As the maximum number of AUs

grows, it takes longer to perform a merge/split operation for all

AUs. If using 25 fps as requirement, the maximum number of AUs

cannot exceed 11. However, Fig. 11b shows that the tracking accu-

racy would hardly decrease even when the merge/split happens

every 6 frames (240 ms). This brings much room for tolerance to

a low-end processor on edge platforms. It again demonstrates the

virtue of the proposed HW/SW hierarchy in REMOT.

5 LIMITATIONS & FUTUREWORK

While our current design of REMOT works well with our target

dataset, it has several limitations we plan to address in the future.

First, the current MOT algorithm is designed for use with a station-

ary DVS camera where the static background is inherently removed.

In cases with a moving camera, our MOT algorithm will need to be

enhanced with techniques distinguishing between target objects

and the background. Also, our MOT algorithms currently cannot

handle occlusion well when the tracks of two objects cross. Finally,

our proposed algorithms include many heuristic parameters that

are sensitive to specific scenarios. In the future, we intend to de-

velop learning-based algorithms that take advantages of the partial

information collected by each AU to guide their merge and split

operations so they can be aware of occlusions and adapt to chang-

ing scenarios. We intend to accelerate these data-driven operations

from software to a new hardware AU manager close to the AUs.
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Figure 10: Accuracy varies as the changes of expand-

ing/shrinking parameter (vertical) and merging parameter

(horizontal). Both y-axes are the size 𝑑 of expanding and

shrinking. The x-axis of (a) is themaximumdistance ofmerg-

ing, and x-axis of (b) is the minimum IoM ratio of merging.
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Figure 11: Latencies of merging and splitting get longer as

the maximum number of AUs increases (a). Accuracy drops

slightly as the time interval of merging and splitting opera-

tions is prolonged (b).

6 CONCLUSIONS

In this paper, we have presented REMOT, a hardware-software

architecture and a family of attention-guided multi-object track-

ing algorithms that run on this system. By partitioning the MOT

task to operate in both hardware and software, we demonstrated

that real-time performance can be achieved even on modest edge

FPGA platforms when tested on real-world DVS datasets. The par-

titioned architecture allowed efficient low-level event processing

throughput at up to 2.22 Meps while consuming 5.68W system

power, which was 33.6 times higher throughput and 25.9 times

more power-efficient than an equivalent software-only implemen-

tation. The proposed architecture is flexible, modular, and scalable,

which allows future improved attention-guided MOT algorithms

to be developed.
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